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Abstract 

The purpose of this research is to enhance existing lane changing models to 

incorporate and capture the persistence of the driver’s behavior, through modeling of 

the underlying lane selection process. Persistent behavior is assumed and accepted for 

strategic travel choices (e.g. destination, path and schedule). Based on this, we can also 

assume that drivers may persist in trying to complete driving goals such as lane 

changing. Thus, the decisions drivers make over time are not independent, but are 

related by a logical and stable relation.  

Hidden Markov Models (HMMs) are appropriate for taking into account the 

transitions between phases and find their use in categorizing sequences of data. HMMs 

are based on two hypotheses: there exists a latent selection process which evolves from 

state to state (in our case, the selection of the target lane) and that the study of an 

observable output (i.e. the observed lane changing action) could provide information on 

this process. The observable state depends on the previous choices, which are the 

underlying hidden states. For example, we observe that a driver stays in his current 

lane, but we can not observe the real reason that caused him to stay there. The driver 

may have chosen not to pursue a lane change and to stay in his current lane or he may 

have chosen to move to another lane but could not complete the lane change. In 

summary, we can assume that the lane changing decision process is latent and only the 

driver’s actions (lane changes) are observed. 

A framework for modeling the lane changing behavior taking into account the state 

dependence between observations of a given driver over time, which utilizes the above 

mentioned concepts, is developed. Statistical tests show that the State Dependence 

Model does better fit the data compared to previous models and therefore should be 

selected for prediction.   
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Chapter 1  

Introduction 

1.1 Motivation 

Overloaded freeways and congested main roads all over the world reflect the fact 

that the existing road networks are not able to cope with the increasing demand for 

mobility. Traffic Congestion has been one of the major challenges facing road 

authorities around the world and it continues to grow not only in urban areas, but also 

in suburban and rural areas. Israel is no exception. Traffic Congestion has a significant 

adverse economic impact through deterioration of mobility, safety and air quality. 

Development of the road network has in many cases, almost exhausted the available 

land. Moreover, in many areas, environmental constraints limit construction of new 

roads or expansion of existing ones. Thus, on the one hand, it is socially untenable to 

expand the existing infrastructure further in order to relax the situation; and on the other 

hand, mobility is vital for the economic development.  

As a result, the importance of better management of the road network to efficiently 

utilize existing capacity is increasing. In recent years, a large array of traffic 

management schemes have been proposed and implemented. The main idea of traffic 

management is to efficiently utilize roads and traffic systems that are already built to 

minimize congestion and maximize safety. Methods and algorithms proposed for traffic 

management need to be calibrated and tested. In most cases, only limited, if any, field 

tests are feasible because of prohibitively high costs and lack of public acceptance. 

Furthermore, the usefulness of such field studies is deterred by the inability to fully 

control the conditions under which they are conducted. Hence, tools to perform such 

evaluations in a laboratory environment are needed.   
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Intelligent Transportation Systems (ITS) applications, such as dynamic traffic 

control and route guidance, have emerged as efficient tools for traffic management. 

These applications involve information dissemination from a traffic management center 

to drivers and deployment of management and control strategies. The impact of 

information and control strategies on traffic flow can be realistically modeled only 

through the response of individual drivers to the information.  

Microscopic traffic simulators are becoming increasingly popular as evaluation and 

planning tools for transportation improvement initiatives and particularly valuable in 

the context of dynamic traffic management systems. They are used to test and evaluate 

infrastructure design and operation and control policies in a virtual environment. These 

tools can evaluate complex traffic systems which incorporate various components (i.e., 

traffic signals, ramp metering, incidents and traveler information) operating 

simultaneously. They offer cost savings and flexibility compared to testing or 

implementation in the real world.  The advantages of microscopic traffic simulation 

tools have motivated researchers to study driving behaviors for accurate modeling. 

Modern traffic simulation tools are a synthesis of a number of interacting models. 

These models belong to two categories: models that capture traffic dynamics and 

models that capture travel behavior (i.e., route choice and response to travelers' 

information). Traffic dynamics are captured by detailed driving behavior models.  

Driving behavior models describe drivers’ decisions with respect to their vehicle 

movement under different traffic conditions. These models include speed/acceleration 

models, which describe the movement of the vehicle in the longitudinal direction, and 

lane changing models, which describe drivers' lane selection and gap acceptance 

behaviors. Thus, the lane changing model is in particular an important component of 

microscopic traffic simulation tools.  

Lane changing models consist of lane selection models, which concern drivers' 

desire in changing lanes, and gap acceptance models, which concern the decision to 

execute the lane-change. Modeling the lane changing decision process is very complex 

due to its latent nature and the potentially large number of factors a driver considers 

before making a decision. The only observable part of this process is a successful lane 

change action. The exact time at which a driver decides to change lanes cannot be 

observed. Most current models assume that drivers make repeated instantaneous 
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decisions. At each point in time the driver assesses the situation and selects the 

immediate action independent of previous decisions. However, in reality, the decisions 

drivers make over time are not independent. This work will develop a framework and 

estimate models for lane changing behavior taking into account dependencies in the 

lane changing decisions drivers make over time. 

1.2 Problem Description 

Driving is a hierarchical task with three interacting levels. Any action the driver 

completes, such as a lane change, requires the driver to undertake the following tasks: 

 

• Navigation or planning (Strategic): Route choice and trip schedule decisions 

drivers make pre-trip and en-route. 

• Guidance (Tactical): Determination of the two dimensional movement of the 

vehicle in traffic. 

• Control (Operational): Continuous activities the driver performs to control 

and direct the vehicle (e.g. steering, throttle and braking). 

 

The driver makes strategic decisions: chooses a path and determines a schedule for 

the trip (e.g. in terms of desired arrival time). Tactical decisions are affected by the 

vehicle’s driving neighborhood and by the strategic considerations: the driver has to be 

in the correct lanes in order to follow the path plan; the trip schedule affects desired 

speeds. If the trip schedule is not kept or in the presence of traffic information the 

driver may decide to re-evaluate the path plan and switch paths. The choices of speed 

and lane are translated to mechanical actions to control the vehicle.  

Existing driving behavior models have several important limitations. Among them 

is that in many cases they do not adequately capture the sophistication of drivers: they 

do not capture the interdependencies among the decisions made by the same drivers 

over time; and represent instantaneous decision-making, which fails to capture drivers' 

planning and anticipation capabilities. 

Persistent behavior is assumed and accepted for strategic travel choices (e.g. 

destination, path and schedule). Based on this, it is also realistic to assume that drivers 
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may persist in trying to complete tactical goals such as lane changing, as well. Thus, the 

decisions drivers make over time are not independent, but are related by a logical and 

stable relation.  

Hidden Markov Models – HMMs – (Rabiner, 1986) are appropriate for taking into 

account the transitions between phases and find their use in modeling sequences of 

data. HMMs are based on two hypotheses: there exists a latent selection process which 

evolves from state to state and that the study of an observable output that is affected by 

this process could provide information on this process. The observable state is the 

consequence of the previous decisions, which are the underlying hidden states.  

This thesis explores the integration of HMM structures within lane changing models 

in order to introduce persistent behavior into these models. A model that captures 

drivers' lane changing behavior under the assumption of stability and persistence is 

developed in this thesis.  

1.3 Thesis Outline  

This thesis consists of six chapters. In Chapter 2, a literature review of existing lane 

changing models and Hidden Markov Models is presented. Chapter 3 presents the 

framework and structure of the proposed lane changing model. In chapter 4, the 

available data for estimation of this model is described. Estimation results are presented 

in Chapter 5. Finally, conclusions and directions for further research are summarized in 

Chapter 6.  



 6 

 

Chapter 2  

Literature Review 

This chapter reviews literature on two subjects: Lane Changing Models and Hidden 

Markov Models. The next section summarizes some of the relevant literature on lane 

changing models and their limitations. 

2.1 Lane Changing Models 

Lane changing is usually modeled in two steps: the decision to consider a lane 

change – lane selection process, and the decision to execute the lane change – gap 

acceptance model. Lane changing behavior has received considerable attention, 

particularly as part of the development of microscopic traffic simulation models in 

recent years.  

2.1.1 Background 

Lane changing behavior has a significant effect on traffic flow. A great deal of 

research has been conducted in the last two decades to develop mathematical models to 

simulate the lateral movements of a vehicle in multi-lane road facilities.  

In most lane changing models it is assumed that drivers’ behavior is governed by 

two basic considerations: achieving a desired speed and being in the correct lane to 

undertake an intended turning maneuver. Thus, lane changes can be broadly classified 

as either mandatory or discretionary. Drivers undertake mandatory lane changes (MLC) 

when they must leave their current lane due to lane blockages or some other traffic 

restrictions. They perform discretionary lane changes (DLC) when they perceive that 

they can improve their driving conditions by moving to another lane, although it is not 
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necessary to do so. Drivers may have different levels of acceptable risks under these 

two conditions. The execution of lane changes is modeled using gap acceptance 

models.  

Gipps (1986) introduced the first lane changing model intended for micro-

simulation tools. The necessity, desirability and safety of lane changes were considered 

in the model. The model is essentially a structure connecting the decisions drivers make 

before changing lanes. Their behavior falls into one of three patterns, depending on the 

distance to the intended turn. While the turn is remote it has no effect on lane changing 

decisions and the driver concentrates on maintaining the desired speed. When the 

intended turn is in the middle distance zone, the driver ignores opportunities to improve 

speed that involve changing lanes in the wrong direction. The driver also tends to move 

to and remain in the lanes most appropriate for his turn. Finally, in the zone close to the 

turn, the driver is interested solely in reaching the correct lane and speed is 

unimportant. When more than one lane is acceptable the conflict is resolved 

deterministically by a priority system considering, in order of importance, locations of 

obstructions, presence of heavy vehicles and potential speed gain. 

This framework was implemented in different microscopic traffic simulation 

models. One example is CORSIM (Halati et al. 1997, FHWA 1998). In Corsim, the 

motivation to perform DLC is quantified in terms of the subject vehicle’s speed and 

headway with respect to the vehicle in front. A risk factor is computed for each 

potential lane change. The risk is calculated for the subject with respect to its intended 

leader and for the intended follower with respect to the subject. The risk factor is 

calculated in terms of the deceleration a driver must apply if its leader is to break to a 

stop, and subsequently compared to a threshold value, which is determined by the type 

of lane change and its urgency.  

This framework was also implemented in MITSIM (Yang and Koutsopoulos, 1996), 

which uses a probabilistic approach to model conflicting goals in selecting lanes. Lane 

changes are again classified as MLC or DLC. MLC are modeled with an assumption 

that the driver has four goals in performing MLC: to move to the next destination on his 

travel path, to bypass a lane blockage, to avoid a restricted-use lane and to comply with 

signs. If there are conflicting goals, they are resolved probabilistically based on utility 

theory. DLC, are modeled with the assumption that the primary goal of the driver in 
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changing lanes is to achieve desired speed. A driver performs lane changing only when 

both the lead and lag gaps in the target lane are acceptable.  

Hidas and Behbahanizadeh (1998) implemented a similar model in the micro-

simulator SITRAS. The two distinct features that make their model unique are a new 

definition of goals for DLC and the introduction of cooperative lane changing in MLC. 

In addition to the speed advantage in DLC, similar to Yang and Koutsopoulus' model, a 

queue advantage was added as a motivation for DLC. In other words, if the adjacent 

lane provides a faster speed or a shorter queue, a driver has a motivation to change 

lanes. The second additional feature of this model is that the model accounts for 

cooperativeness when determining mandatory lane changes. In heavily congested traffic 

conditions, MLC may occur through cooperation with the intended follower. The 

willingness of the follower to allow the subject vehicle to change lanes is a function of 

his aggressiveness. A cooperative follower will start following the subject vehicle and 

the subject will start following the intended leader in the target lane. As a result of this 

cooperation, the subject vehicle is now able to change lanes into the gap opened up in 

the target lane.  

The distinction between MLC and DLC in the above models is artificial and 

prohibits capturing trade-offs between mandatory and discretionary considerations. The 

parameter values used with these models are usually based on the modelers’ judgment. 

Frameworks for rigor estimation of the model parameters were not proposed. 

Inconsistencies in the behavior of a driver over time and variability between drivers are 

ignored. The different zones are defined deterministically. Moreover, normally it is 

assumed that the decision process is repeated at every time step and the decisions 

drivers make over time are independent. 

Ahmed et al. (1996) and Ahmed (1999) developed a lane-changing model that 

captures both MLC and DLC situations. Ahmed (1999) proposed a framework to 

jointly estimate parameters of the lane selection and gap acceptance components of lane 

changing models. The structure of the model is shown in Figure 2.1. The lane changing 

process is modeled with three steps: a decision to consider a lane change, choice of a 

target lane and acceptance of gaps in the target lane. A discrete choice framework is 

used to model these decisions. Logit models are used to capture the various choices. 

When a MLC situation applies, the decision whether or not to respond to it depends on 
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the time delay since the MLC situation arose. DLC is considered when MLC conditions 

do not apply or the driver chooses not to respond to them. A two-step decision process 

is assumed: First, drivers examine their satisfaction with driving conditions in the 

current lane, which is affected by the difference between the subject speed and its 

desired speed. The model also captures differences in the behavior of heavy vehicles 

and the effect of the presence of a tailgating vehicle. If the driver is not satisfied with 

driving conditions in the current lane, he compares conditions in neighboring lanes to 

those in the current lane in order to choose the target lane. Lane utilities are affected by 

the speeds of the lead and lag vehicles in these lanes relative to the current and desired 

speed of the subject vehicle. A gap acceptance model is also included within the lane 

changing framework.   
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Figure 2.1 - Structure of the lane changing model proposed by Ahmed (1999) 

It is difficult to estimate models for the choice to react to an MLC situation (the 

upper level decision in Figure 2.1) which is unobserved. Therefore the discretionary 

and mandatory lane change models were estimated separately, for special cases, where 

the nature of the lane changes is obvious. The data used for estimation was collected on 
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200 meters section of Interstate 93 at the Central Artery, located in downtown Boston. 

Ahmed (1999) estimated the MLC model using data for the special case of drivers that 

merge to the freeway from an on-ramp, under the assumption that all vehicles are in 

MLC state.  

Wei et al. (2000) developed a set of deterministic lane selection rules for drivers 

that turn into two-lane urban arterials and their subsequent lane changing behavior 

based on observations made in Kansas City, Missouri. The model captured the effect of 

the driver's path plan on the lane choice. Lane selection is determined by the location 

and direction of intended downstream turns. Drivers that intend to turn at the next 

intersection choose the correct lane. Drivers that intend to turn further downstream 

choose the correct lane if it is the closest to the side they are entering the arterial from. 

If the correct lane is the farthest, the lane choice is based on the aggressiveness of the 

driver. Driver's lane change behavior in the arterial is influenced by a similar set of 

rules. It was observed that passing is an important behavior that needs to be modeled. 

Vehicles already in the correct lane may undertake a passing maneuver in order to gain 

speed. The model requires that both the adjacent gap in the other lane and the gap in the 

current lane between the subject and its leader be acceptable for passing to take place. 

Toledo et al. (2003) developed an integrated lane-shift model that allows joint 

evaluation of mandatory and discretionary considerations and captures trade-offs 

between these considerations. He proposed a lane changing model based on the tactical 

choice of the target lane, stating that a driver may need to perform a sequence of actions 

in order to complete a desired lane change. The awareness to the MLC situation is more 

realistically represented as a continuously increasing function rather than a step 

function. The model consists of two levels: choice of a lane shift and gap acceptance 

decisions. The structure of the model is shown in Figure 2.2.  

The first step in the decision process, lane shift, is latent since the target lane choice 

is unobservable and only the driver's lane-changing actions are observed. Latent 

choices are shown as ovals and observed ones are represented as rectangles. The driver 

has, at any particular instance, the option of selecting to stay in the current lane or 

opting to move to an adjacent lane. The Current branch corresponds to a situation in 

which the driver decides not to pursue a lane change. In the Right and Left branches, 

the driver perceives that moving to these lanes, respectively, would improve his 
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condition in terms of speed and path plan. In these cases, the driver evaluates the 

adjacent gap in the target lane and decides whether the lane-change can be executed or 

not. The lane change is executed (change Right or change Left) only if the driver 

perceives that the gap is acceptable, otherwise the driver does not execute the lane-

change (no change). This decision process is repeated at every time step.  

RightLeft Current

No 
Change

Target 
Lane

Gap 
acceptance

Change 
Right

Change
Left

No 
Change

No 
Change

 

Figure 2.2 - Structure of the lane changing model proposed by Toledo et al. (2003) 

Explanatory variables in this model include neighborhood variables, path plan 

variables, network knowledge and experience, and driving style and capabilities. Since 

information about the driver’s style and characteristics is not available, individual 

specific error terms are introduced to capture unknown information. The parameters of 

the model were estimated jointly using second by second trajectory collected in a 

section of I-395 Southbound in Arlington, VA.  

Choudhury (2005) developed a lane changing model that captures the lane-changing 

behavior in presence of exclusive lanes. That is, the drivers’ preference to specific 

lanes, such as in the case when travel lanes and passing lanes are defined, can be 

captured in the model. The direction for an immediate lane change is based on an 

explicit choice of a target lane rather than myopic evaluation of adjacent lanes as in 

previous models. The model was estimated using a maximum likelihood estimator.  

The model consists of two levels of decision making: the target lane choice and the 

gap acceptance. The structure of the model is shown in Figure 2.3.  
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Figure 2.3 - Structure of the lane-changing model for a four-lane road with the subject 

vehicle in Lane 2 proposed by Choudhury (2005) 

The decision structure shown on the top is for a vehicle that is currently in the 

second lane to the right (Lane 2) in a four-lane road. Therefore, Lane 3 and Lane 4 are 

on its left, and Lane 1 is on its right. At the highest level, the driver chooses the target 

lane. In contrast with existing models the choice set constitutes of all available lanes in 

the road (Lane 1, Lane 2, Lane 3 and Lane 4 in this example). The driver chooses the 

lane with the highest utility as the target lane. If the target lane is the same as the 

current lane (Lane 2 in this case), no lane change is required (No Change). Otherwise, 

the direction of change is to the right (Right Lane) if the target lane is Lane 1, and to the 

left (Left Lane) if the target lane is either Lane 3 or Lane 4. If the target lane choice 

dictates a lane change, the driver evaluates the gaps in the adjacent lane corresponding 

to the direction of change and either accepts the available gap and moves to the 

adjacent lane (Change Right or Change Left) or rejects the available gap and stays in 

the current lane (No Change). 

Explanatory variables affecting the target lane utilities of a driver are lane attributes, 

surrounding vehicle attributes and path plan. Information about the driver's style and 

characteristics is however not available and is captured by introducing individual 

specific error terms. 
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Table 2.1 - Estimation results of the target lane model proposed by Choudhury, 2005. 

Variable Parameter value t-statistic 

Target Lane Model 

Lane 1 constant -1.696 -3.03 

Lane 2 constant -0.571 -1.68 

Lane 3 constant 0.059 1.16 

Lane density, vehicle/km -0.013 -1.21 

Average speed in lane. m/sec 0.176 1.59 

Front vehicle spacing, m 0.024 3.86 

Relative front vehicle speed, m/sec 0.115 1.46 

Tailgate dummy -4.935 -1.96 

CL dummy 2.686 1.55 

1 lane change from the CL -0.845 -1.15 

Each additional lane change from the CL -3.338 -1.91 

Path plan impact, 1 lane change required -2.549 -4.57 

Path plan impact, 2 lane changes required -4.953 -2.19 

Path plan impact, 3 lane changes required -6.955 -1.65 

Next exit dummy, lane change(s) required -0.872 -1.35 

θMLC -0.417 -2.48 

π1 0.001 0.68 

π2 0.086 1.38 

αlane1 -1.412 -2.29 

αlane2 -1.072 -0.50 

αlane3 -0.071 -3.61 

αlane4 -0.089 -1.56 
Lead critical gap 

Constant 1.541 5.59 

Max (∆Snt
lead,0) , m/sec -6.210 -3.6 

Min (∆Snt
lead,0) , m/sec -0.130 -2.09 

αlead -0.008 -3.17 

σlead 0.854 1.29 
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Lag critical gap 

Variable Parameter value t-statistic 

Constant 1.426 5.35 

Max (∆Snt
lag,0) , m/sec 0.640 3.36 

αlag -0.205 -0.48 

σlag 0.954 4.80 

L(0) = -1434.76 

L(β) = -875.81 

 

The parameters of the model were estimated jointly using second by second 

trajectory data collected in a section of I-395 Southbound in Arlington, VA, used also 

by Toledo et al. (2005). The estimation results of the target lane model are summarized 

in Table 2.1. 

An important limitation of existing models is that drivers are still assumed to make 

decisions about lane changes at discrete point in time, independently of the decisions 

made earlier. In general, lane changes are modeled as discrete events occurring at 

specific points in time. Current models assume that the decision process is repeated at 

every time step. However, drivers may, for example, persist in trying to complete a lane 

change; it means; drivers may have the characteristics of persistence in trying to 

complete their lane changing. This behavior is not captured in the models described 

above. One of the ways to fill this gap in the existing models is applying the theory of 

the Markov chains.  

The next section introduces the concept of Hidden Markov Models (HMM) and 

explains how they can be used to taking into account the transitions between phases.  

2.2 Hidden Markov Models (HMMs) 

In many areas it is often the case that we are interested in finding patterns in 

sequences of events that appear over time. There are processes that consist of a finite 

number of states. They start in one of these states and move successively from one state 

to another. Each move is called a step. At each point in time the system may have 

changed states from the state the system was in the moment before, or it may have 
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stayed in the same state. If the chain is currently in state i, then it moves to state j at the 

next step with some known probabilities pij. The probabilities pij, called transition 

probabilities, do not depend upon which states the chain was in before the current state. 

Thus, every future state is conditionally independent of every prior state (except the 

current one). The above process is called Markov process. 

However, in some cases the patterns that we wish to find are not described 

sufficiently by a Markov process. For example, the cases where the state is not directly 

visible, but variables influenced by the state are visible. In such cases the observed 

sequence of states is probabilistically related to the hidden process. We model such 

processes using a HMM where there is an underlying hidden Markov process changing 

over time, and a set of observable states which are related somehow to the hidden 

states. HMMs are based on two hypotheses: there exists a latent selection process which 

evolves from state to state and that the study of an observable output that is affected by 

this process could provide information on this process. The observable state is the 

consequence of the previous decisions, which are the underlying hidden states. It is 

important to note that the number of states in the hidden process and the number of 

observable states may be different. In a HMM, the history of states the model took 

cannot generally be determined from the data sequence. The relationship between the 

state of the latent process and the observable one is determined by a density function 

attached in each state of the process. 

In the case of lane changing, we can say that the lane selection is a latent process 

which evolves from state to state and generates a sequence of hidden states. This 

evolution is based on two processes. The first process, evolving state by state, is 

invisible - unobservable state (for example, the driver wants to stay in his current lane, 

to exit, etc). The second is the observable state (for example the driver changes lane, 

stays in his current lane, etc). So, we are interested in finding a model for generating a 

data sequence. As it is explained in this section, HMMs are appropriate for taking into 

account the transitions between phases and find their use in modeling sequences of 

data.  
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A HMM is a triple ( , , )A BΠ  , where: 

( )iπΠ = ; Vector of the initial state probabilities; contains the probability of the 

hidden model being in a particular hidden state at the beginning of the process. 

( )ijA a= ; State transition matrix; 
1

Pr( | )
t ti jx x

−

; holding the probability of a hidden 

state given the previous hidden state. 

 ( )ijB b= ; Confusion matrix;  Pr( | )i jy x ; containing the probability of observing a 

particular observable state given that the hidden model is in a particular hidden state. 

Each probability in the state transition matrix and in the confusion matrix is time 

independent - that is, the matrices do not change in time as the system evolves. In 

practice, this is one of the most unrealistic assumptions of Markov models about real 

processes. 

For example, Figure 2.4 represents a 3-state HMM, where each hidden state 

( )ix conducts to one of 4 observable states/actions ( )iy  with some probability ( )ijb . 

The state transition probabilities ( )ija are the probabilities of moving from one hidden 

state to another one.  

 

Figure 2.4 - A 3-state HMM, with 4 observable states/actions (Source: Wikipedia). 
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Once a system can be described as a HMM, the problem of generating a HMM 

given a sequence of observations can be solved. In other words, the model parameters 

most likely to have generated a sequence of observations can be determined.  

2.2.1 Earlier Utilization of HMMs in the Transport Field 

HMM are extensively used in the field of speech recognition. A few applications 

have also been proposed in transportation science, where most of them have been 

applied in the field of driving assistance systems and behavior recognition. Overall, the 

application of the HMM to lane changing models is at an early stage and rather 

incomplete and limited. 

Pentland and Liu (1999) proposed a framework that captures the driver’s intended 

action, for instance if the driver is about to brake or turn. They applied HMMs to 

identify drivers’ current internal (intentional) state and to predict the most likely 

subsequent sequence of internal states. The modeled actions are events like stopping at 

the next intersection, turning left at the next intersection, turning right at the next 

intersection, changing lanes, passing the car in front, or doing nothing. Their model 

considers several hidden internal mental states that are the individual steps that make up 

the action, each with its own interstate transition probabilities. The observed variables 

are the changes in heading and acceleration of the car. The model assumes that the 

driving actions can be broken down into a long chain of simpler sub-actions. A lane 

change, for instance, may consist of the following steps, where each sequence was 

modeled by a HMM: (1) a preparatory centering the car in the current lane, (2) looking 

around to make sure the adjacent lane is clear, (3) steering to initiate the lane change, 

(4) the change itself, (5) steering to terminate the lane change, and (6) a final 

recentering of the car in the new lane. The model statistically characterizes the 

sequence of steps within each action and then using the first few preparatory steps to 

identify which action is being initiated. In order to recognize which action is occurring 

given the observed pattern of heading and acceleration, the observed pattern of driver 

behavior is compared to the HMM of each action. The data used in this work was 

collected with a driving simulator. The model achieved 95% recognition accuracy 

approximately 1.5 sec. after the initiation of the maneuver. 
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Another application of HMMs was carried out by Kuge et al. (2000). They 

proposed a method to predict drivers' lane change intentions by using steering behavior 

data. They characterized three different maneuvers that were considered the hidden 

states in the HMM: emergency lane change (LCE), normal lane change (LCN), and 

lane keeping (LKN). The steering angle, steering angle velocity, and steering force 

were the observable states, within each one they considered several sub-HMM. 

Recognition by the HMM involved calculating the probability that the given 

observation data sequence would be generated by one of the three models. The forward-

backward algorithm was used in order to compute state probabilities and identify the 

most likely hidden state. The system simulates a set of possible driver intentions and 

their resulting behaviors using a lane changing model. The system compares the 

model's simulated behavior with a driver's actual observed behavior and thus 

continually infers the driver's unobservable intentions from the observable actions. The 

data used with this model was collected with a driving simulator. The system achieved 

98% accuracy on detection of LCE within 0.5 sec. after the initiation of the maneuver, 

but did not report an analogous accuracy for LCN, citing problems with distinguishing 

between normal lane change and lane keeping data points.  

Dapzol (2005) proposed a model that predicts driver behavior using an HMM. The 

model was used to identify the driver's aim and the driving situation he is in. The 

driving situation was divided into phases, which constitute the hidden states. A base 

driving situation model using HMM was built. This allowed defining for a given 

sequence of data to which situation it may belong. An experiment was conducted in real 

driving where 718 driving sequences were collected, but only 36 different driving 

situations were classified. For each sequence, the driver's actions, vehicle 

characteristics, and environment classification were recorded. In order to categorize the 

driver's current situation, the system compares a data temporal series with a library of 

driving situation models and selects the most adequate. The model allowed them to 

categorize driving sequences offline with 90% success rate (using all the data of each 

sequence), and online with 85% success rate (only using the data of the first second of 

each sequence).  

Zou and Levinson (2006) implemented HMMs to model the unobservable driver 

attitudes and to achieve the classification of the driver actions in different situations at 
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intersections. In this application, the hidden states are the attitudes of drivers towards 

traffic conditions; the observable states are defined by a combination of the acceleration 

rate of the vehicle and whether or not it is in a conflict with other vehicles. Thus, the 

observable vehicle state set includes 6 states which are generated by {Acceleration, 

Cruising, Deceleration} x {Conflict, Not Conflict}. An HMM might represent a set of 

states in real world, therefore a state is recognized by computing the probability that an 

HMM generates the observed states. The Baum-Welch estimation algorithm was 

applied to estimate these probabilities. They found that three clusters (states) are 

sufficient to represent distinct driving attitudes for the sample set. However, these states 

are behaviors without any “meaning” and in order to arrive to a real understanding of 

behavior, it is vital to obtain the meanings of the measured behaviors. The authors used 

observed vehicle movement data to estimate the model. 

2.3 Discussion  

The current emphasis in driving behavior modeling is in development of more 

realistic models to help improve the fidelity of microscopic traffic simulation. This 

could be achieved by increasing the level of detail in the specification of models to 

better capture the complexity and sophistication of human decision-making process. 

The various lane changing models mentioned in the first part of this chapter are 

increasingly sophisticated and complex. However, they still assume that drivers make 

instantaneous decisions about lane changes. At each point in time, the driver assesses 

the situation and selects the immediate action, independently of the decisions made 

earlier. However, in reality drivers may be persistent in trying to complete a lane 

change. This behavior is not captured by these models.  

It was also shown that driver behavior modeling and recognition of different types 

of lane changes is possible using HMMs. However, the application of the HMM to the 

lane changing models is at an early stage. 

Most of the applications of the HMM structure for lane changing, focused in 

identifying the intention of the driver using observed behavior (i.e. acceleration, 

steering angle). These models could detect whether or not the driver is changing lanes 

at the time of the observation but did not explain why the lane changing is undertaking 
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and so cannot predict lane changes ahead of time. Therefore, these models cannot be 

used in traffic simulation.  

As it was also shown, most of the existing models that applied HMM, did not use 

real data to estimate them, but used data obtained from driving simulators. The results 

on dynamic simulator shows the capacity of this approach to cope with the variability 

of behavior, but caution must be taken in transferring them to real world driving. It is 

possible, for instance, that there are driving styles not seen in any of their subjects. The 

data used from a driving simulator is also purer than those obtained under real driving 

conditions. Most of the models also used a restricted number of situations. Introduction 

of new situations will decrease the recognition rate. There has been no effort to develop 

a model where a wide range of situations in a real event of lane changing are captured. 

We can conclude that there are limited works where persistence and stability 

behavior is captured in the driver's behavior. These works also do not span the entire 

range of real driving situations. The purpose of this research is to enhance existing lane 

changing models to incorporate this behavior, using the HMMs formalism and in this 

way, be able to understand the conditions that conducted to the driver to execute a lane 

change. 
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Chapter 3  

Model Structure 

In this chapter the framework and structure of the proposed lane changing model 

are presented. The methodology presented in this study relies on the hypothesis that 

drivers are persistent in their behavior. A complete lane changing model that explicitly 

takes into account correlations and dependencies in the lane changing decisions drivers 

make over time is presented. The model is based on previous works of lane changing 

models. The contribution of the proposed model is the explicit addition of the state 

dependence concept and the treatment of the initial conditions problem it brings about. 

The presentation is organized as follows: first, the concepts of state dependence are 

introduced. Then, these concepts are utilized to develop the structure of the proposed 

lane changing model, which takes drivers' persistence into account. Finally, the 

likelihood function for the joint estimation of the lane-selection and gap-acceptance 

components of the model is formulated. 

3.1 Theoretical Framework - Integration of the HMM  

A lane change decision process is assumed to have two steps: the target lane choice 

and acceptance of a gap in the direction of the target lane. Modeling such a process is 

extremely complicated. The lane change decision process is latent in nature; the target 

lane is unobservable. All that is observed is the execution of the lane change (change 

left, change right or no change).  

We can assume that lane changing is based on the evolution of two processes; the 

first one is the invisible underlying driving goal, for example the driver wants to stay in 

his current lane or change to another lane. This hidden process determines another 

visible process which explains the available observations - the lane a vehicle is in.   
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An important limitation of existing driving behavior models, discussed in Chapter 

2, is that in most cases models assume that drivers make instantaneous decisions. At 

each point in time the driver assesses the situation and selects the immediate action. In 

reality, human drivers may conceive and perform action plans over a length of time and 

be consistent in trying to complete these plans.  

In the next sections, possible general modeling structures that allow capturing state 

dependency will be discussed. Then their application for our particular case of study of 

lane changing will be presented. The observed actions are named to and the latent states 

are named ts . 

3.1.1 Static Model  

An alternative approach, as was presented by Toledo et al. (2003) assumes that all 

state dependencies are captured by the explanatory variables. In other words, the state 

dependency is only indirectly considered. This approach is based on the concept of a 

partial short-term plan. The assumption is that the driver executes one step of the short-

term plan, re-evaluates the situation and decides the next action to take. 

Under the partial short-term planning assumption, the joint probability of a latent 

state and the observed actions, at time t, is given by: 

( ) ( ) ( )t t t t tp o ,s | X p o | s , X p s | X=  (3.1) 

Where, to are the observed actions (the alternatives), { }1,...to I∈  and ts are the 

latent states, { }0,1,...ts t∈ . X are explanatory variables. 

The marginal probability of an observation is given by: 

( ) ( )| , |
t

t t t
s

p o X p o s X=∑   (3.2) 

The joint probability of the entire sequence of observations is given by: 
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( ) ( )
1

T

t
t

p O | X p o | X
=

=∏  (3.3) 

Where, T is the number of observed time periods. 

 

3.1.2 Full State Dependency 

Another possible modeling approach, proposed by Toledo et al. (2003), would be to 

define latent states as combinations of a short-term goal and a short-term plan and 

capture the dynamics of the behavior by modeling state dependencies. The joint 

probability of a latent state (ts ) and observed action (to , i.e. lane changing) of a given 

vehicle at time t, conditional on the sequence of previous states is given by: 

( ) ( ) ( )1 1 1t t t t t t t tp o ,s | S ,X p o | s ,S ,X p s | S , X
− − −

=  (3.4) 

Where, tS  is the sequence of states up to time t, { }; 0,1,...t iS s i t= = . to are the 

observed actions (alternatives), { }1,...to I∈ . ts  are the latent states, { }0,1,...ts t∈ . X are 

explanatory variables. 

The probability of the entire sequence of states (tS ) and observations (tO ) is given 

by: 

( ) ( )0 1
1

T

T T t t t
t

p O ,S | s ,X p o ,s | S , X
−

=

=∏  (3.5) 

Where, T is the number of observed time periods. 

Finally, the joint marginal probability of observations is calculated by summation 

over all possible state sequences: 

( ) ( )0 0T T T
state

sequences

p O | s , X p O ,S | s , X= ∑   (3.6) 
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3.1.3 One Step State Dependency 

In this section, we propose an intermediate approach to capturing the state 

dependency. In this approach, the assumption of the evolution of two processes is still 

relevant. The observable state is the consequence of the previous decisions, which are 

the underlying hidden states. The particularity of this approach is that every future state 

does not depend upon which states the chain was in before the current state. It is 

assumed that future state transitions and actions depend only on the current state and 

are independent of all previous states. 

Under the above assumptions, the joint probability of a latent state (ts ), the 

previous latent state (1ts
−

) and the observed actions (to ) of a given vehicle at time t is 

given by: 

( ) ( ) ( ) ( )1 1 1t t t t t t t tp o ,s ,s | X p o | s , X p s | s , X p s | X
− − −

=       (3.7) 

Where, 1( | )tp s X
−

 is calculated recursively using Equation (3.8): 

2

1 1 2 2( | ) ( | , ) ( | )
t

i i i
t t t t

i TL

p s X p s s X p s X
−

− − − −
∈

= ∑      (3.8) 

Therefore given the initial probabilities 0( | )p s X , these values can be calculated for 

any t . 

The marginal probability of an observation is given by: 

( ) ( )
1

1| , , |
t t

t t t t
s s

p o X p o s s X
−

−
=∑ ∑  (3.9) 

Finally, the joint probability of the sequence of observations is calculated by:  

( ) ( )
11 tt

T

t
t s s

p O | X p o | X
−

=

=∏∑ ∑  (3.10) 
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It is important to note that 1( | )tp s X
−

is calculated recursively, therefore the 

Equation (3.10) depends on the initial conditions.  

One of the difficulties with the two last formulations is the initial conditions (0s ). In 

most cases it is assumed that the initial conditions are either observed or represent a 

steady state. However, there are many cases where the first time a subject is observed 

does not correspond to any natural starting point and instead, it is determined by the 

location and capabilities of the data collection system. Therefore, it is necessary to find 

a method to overcome this limitation, as it will be explained in the next sections. 

3.1.4 Initial Conditions 

In dynamic panel data models with unobserved effects, the treatment of the initial 

observations is an important theoretical and practical problem.  

Before parameters generating a stochastic process with dependence among time-

ordered outcomes can be estimated, the process must be somehow initialized. In applied 

work, two initial conditions are typically invoked: 

• The pre-sample history of the process is truly exogenous. 

• The process is assumed to be in equilibrium. 

 

If the process has been in operation prior to the time it is sampled, as it happens in 

our case, or if the disturbance term of the model is serially correlated, the initial 

conditions are not exogenous variables. Treating them as exogenous variables, results 

in inconsistent parameter estimates. 

For linear models with an additive unobserved effect, the problems can be solved by 

using an appropriate transformation, such as differencing, to eliminate the unobserved 

effects, and then chooses instruments based on sequential conditional moment 

assumptions.  

Solving the initial conditions problem is notably more difficult in nonlinear models. 

Generally, there are no known transformations that eliminate the unobserved effects 

and result in usable moment conditions. Previous research has focused on three 

different ways of handling initial conditions. The first approach is to treat the initial 

condition for each cross-sectional unit as nonrandom variables. Unfortunately, 
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norandomness of the initial conditions, 0s , implies that 0s  is independent of 

unobserved heterogeneity, υ . Even when we observe the entire history of the process, 

the assumption of independence between υ  and 0s  is very strong. Another approach is 

to allow the initial condition to be random, and then to use the joint distribution of all 

outcomes on the response (including that in the initial time period) conditional on 

unobserved heterogeneity and observed strictly exogenous explanatory variables. The 

main complication with this approach is specifying the distribution of the initial 

condition given unobserved heterogeneity. The third approach, proposed by Heckman 

(1981) is to approximate the conditional distribution of the initial condition. This avoids 

the practical problem of not being able to find the conditional distribution of the initial 

value. 

Specifically the following procedure is proposed and examined by Heckman 

(1981): 

1. Approximate the utility function at the initial observations in the sample to 

individual n , by:  

* *
0

( ) ( , ) ( )

( 0) ( ) (0)

O
n t t n n

O
n n n

U t f s X t

U t f X

αυ ε
αυ µ

= + +

= = + +
 (3.11) 

Where ( )O
nU t and ( 0)O

nU t =  are the utilities functions of the alternative 

{ }1,..., ,...O i I= to individual n  at time t  and at the special case of time 0t =  

respectively where the previous state can not be modeled. (0)nµ  is assumed to be 

i.i.d distributed with mean zero. 

2. Permit (0)nµ to be freely correlated with ( ),  0,...n t t Tε =  and 1cov( , ) 0t tε ε
−
= . 

3. Estimate the model by the method of maximum likelihood without imposing any 

restriction between the parameters of the structural system and the parameters of the 

approximate reduced form probability function for the initial state of the sample. 
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3.2 Application to the Lane Changing Model   

3.2.1 Model Structure 

Driver behavior can be characterized as sequence of basic actions each associated 

with a particular state of the driver-vehicle environment and characterized by a set of 

observable states. In the lane change process, the observable state is the lane change 

(change right, change left, no lane change) and the hidden state is the target lane. 

The lane change models proposed by Toledo et al. (2003) and Choudhury (2005) 

are static models. They assume that all state dependences are captured by the 

explanatory variables. This approach is based on the concept of a partial short-term 

plan. To illustrate this approach, consider the situation described in Figure 3.1: suppose 

that vehicle B is a slow-moving vehicle and that the goal of vehicle A is to overtake it. 

The short-term plan may consist of the following steps: 

• Change to the left lane. 

• Accelerate and pass vehicle B. 

• Change back to the right lane. 

A B

C

 

Figure 3.1 - A lane changing situation illustrating partial short-term planning 

Vehicle A will perform the first step: change to the left lane and then re-evaluate the 

situation and decide what to do next. For example, depending on the behavior of 

vehicle C, vehicle A may continue with the previous plan, or abandon the goal of 

overtaking vehicle B and follow vehicle C in the left lane.  

This approach captures the effect of evolving conditions on driving behavior at the 

expense of assuming that all state dependencies are captured by the explanatory 

variables. This assumption may not be restrictive since explanatory variables that are 
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derived from the positions and speeds of the subject vehicle and surrounding vehicles 

are important in all driving behavior models. The values of these variables depend on 

the past actions of the vehicle (e.g. the current speed and position of a vehicle are a 

function of previously applied accelerations) and so, capture the effects of previous 

actions and states. The computational burden associated with the partial short-term 

approach is low since calculation of the likelihood function requires 2T | s |  probability 

calculations. In spite of the fact that this approach captures the effect of evolving 

conditions on driving behavior, it is also assumed that at each point in time the driver 

assesses the situation and selects the immediate action, and as it was explained earlier it 

is not a real assumption. 

Another possible modeling approach, which was presented in section 3.1.2, would 

be to define latent states as combinations of a short-term goal and a short-term plan and 

capture the dynamics of the behavior by modeling state dependencies. The first 

problem in the analysis of a full state-dependency as was described above is the 

exponential increase in possible trajectories (states). This complexity could be 

discussed with the help of an example. Consider a vehicle that is observed in a two lane 

roadway for three consecutive time periods during which time it did not change lanes. 

 To simplify the discussion further, we consider two possible states "Right lane" or 

"Current lane" of the decision tree. The lane changing decision tree reduces to the one 

shown in Table 3.1. Since the driver did not change lanes, he/she may be in state "Right 

lane and gap reject" or in state "Current Lane" during these three times. 

Table 3.1 - Possible States during the three successive time periods. 

Time 

period 

Lane 

change 

Possible states 

(arrows show state to state transitions) 

1 

 

2 

 

3 

No 

 

No 

 

No 

Right  lane/ reject gap              Current lane 

 

Right  lane/ reject gap              Current lane 

 

Right  lane/ reject gap              Current lane 
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The number of possible sequences in the summation of Equation (3.6) is T| s | , 

where | s | is the number of possible states. The total number of probabilities to 

calculate is 2 TT | s | . Except for degenerate cases with a very small set of possible states 

or a very short observation period, modeling all possible combinations of states is 

prohibitively expensive. From the mentioned above, it is not a viable method of 

analysis.  

To overcome the limits mentioned above, we will propose an intermediate approach 

to modeling driver behavior capturing the effect of evolving conditions on driving 

behavior (state dependency).   

The decision to initiate a lane change and the acceptance of gaps to complete it are 

affected by neighborhood variables and driver characteristics as well as the decision 

state of the driver.  To implement such an approach, we assume that the driver has a 

number of states, each with its own associated interstate transition probabilities. We 

must make observations of the driver’s state, and make a response based on the model 

applied to the current state. But the internal states of the driver are not directly 

observable, thus we must use an indirect estimation process on the observed behavior 

(e.g., staying in the current or changing lanes). We have adapted the expectation-

maximization methods developed for use with HMMs to perform this estimation task. 

The likelihood of any state in our dynamic model makes use of the estimate of the 

current state to adjust the transition probabilities. 

The observed sequence of states is probabilistically related to the hidden process. 

We model such processes using a HMM where there is an underlying hidden Markov 

process changing over time, and a set of observable states which are related somehow 

to the hidden states. 

Figure 3.2 shows the application of this methodology to the lane changing model 

for a two lane case. Latent states are shown as ovals and observed states are represented 

as rectangles. The target lane is the lane the driver perceives as best to be in. The 

decision process is latent since the target lane choice is unobservable. For example, we 

may observe that a driver stays in his current lane, but we cannot observe the reason 

that caused him to stay there: The driver may have chosen not to pursue a lane change 

at all or he may have chosen to move to another lane but could not complete the lane 
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change. Thus lane selection is a latent process which evolves from state to state and 

generates a sequence of hidden states. A desired lane change is executed when the 

driver evaluates the adjacent gap in the target lane and decides whether this gap is 

acceptable (Right Lane), otherwise the driver does not execute the lane change (Current 

lane). This process generated the observable lane action state. 

  

 

Figure 3.2 - Structure of the proposed lane changing model 

However, there is still a difficulty with this formulation: the initial conditions (0s ). 

In most cases it is assumed that the initial conditions are either observed or represent a 

steady state. However, in our case, the first time a vehicle is observed does not 

correspond to any natural starting point that would support this assumption. Instead, it 

is determined by the location and capabilities of the data collection system, as explained 

in the data chapter.  

The lane changing model explains the choice of the driver in two dimensions: the 

target lane choice and the gap acceptance. Lane utility functions may depend on 

explanatory variables as it will be explained in the next chapter. Variables should 

reflect the conditions in the immediate neighborhood in each lane (e.g. relative leader 

speed in each lane and presence of heavy vehicles), path plan considerations (e.g. the 

distance to a point where the driver must be in certain lane(s) and the number of lane 

changes needed in order to be in these lanes) and knowledge of the system (e.g. 

avoiding the left lane before a permissive left turn or avoiding an on-ramp merging 

lane). In most cases information about the characteristics of drivers and their vehicles 
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(e.g. aggressiveness, vehicle's speed and acceleration capabilities and level of driving 

skill) is not available. Therefore, it is necessary to introduce individual-specific latent 

variables in the utilities to capture these correlations. Different choice models are 

obtained depending on the assumption made about the distribution of the error terms. It 

can be assumed that conditional on the value of the latent variable, the error terms of 

different utilities are independent. Mathematically, this specification is given by: 

( ) ( ) ( ) ( )1    lanei lanei lanei lanei lanei lanei
n n n n nU t X t t tβ ρδ α υ ε= + − + +   (3.12) 

Where, ( )lane  i
nU t  is the utility of the alternative of choosing lane i to individual n at 

time t . ( )lane  i
nX t   is a vector of explanatory variables. lane  iβ is a vector of parameters. 

( )1lanei
n tδ − is the state dependence variable. ρ  is the state dependence parameter. nυ  is 

an individual-specific latent variable assumed to follow some distribution in the 

population. lane  iα  is the parameter of nυ . ( )lanei
n tε is a generic random term with i.i.d. 

distribution across the choices, individuals and time. ( )lanei
n tε  and nυ  are independent of 

each other.  

3.2.2 The Target Lane Model 

Next the specification of the models is presented in detail in order to explain the 

two choices that the drivers make within the lane changing model: the target lane 

choice and the gap acceptance decision. 

At the first level, the driver chooses a target lane (TL), which is the lane with the 

highest utility. The target lane choice set constitutes of all the available lanes in the 

roadway. The total utility of lane i  as a target lane to driver n  at time t  can be 

expressed by:   

{ }( ) ( ) ( )       1, 2, 3, 4TL TL TL TL
n n n nU t V t t TL Lane Lane Lane Laneα υ ε= + + ∀ =      (3.13) 

Where ( )TL
nV t  is the systematic component of the utility and  ( )TL TL

n n tα υ ε+  is the 

error term associated with the target lane utilities. nυ  is an individual specific error 
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term that captures correlations between the observations of a single driver over time 

(individual-specific latent variables). TLα is the parameter of nυ . ( )TL
n tε  is a generic 

random term. 

The systematic utilities are given by: 

( ) { }( ) ( ) 1      1, 2, 3, 4TL TL TL TL
n n nV t X t t TL Lane Lane Lane Laneβ ρδ= + − ∀ =      (3.14) 

Where, ( )TL
nX t  is a vector of explanatory variables affecting the utilities of the lanes 

and TLβ  is the corresponding vector of parameters. ( )1TL
n tδ −  is the state dependence 

variable. ρ  is the state dependence parameter. 

The utilities of a target lane may be affected by general lane attributes, such as 

density and speed of traffic in the lane, traffic composition (e.g. percentage of heavy 

vehicles), etc. Moreover, special lane-specific attribute may be included in the utility 

function. For example, the exclusive lane-specific variables are included in the utility of 

a lane if the lane in considerations is a tolled lane.  

The driver's target lane choice may be affected by the variables associated with the 

surrounding vehicles, such as speed and type of the vehicles in the neighborhood. The 

value of these neighborhood variables is indicated by the current position of the vehicle. 

For example, if the front vehicle in the current lane has a very high speed compared to 

the driver's desired speed, the driver is likely to prefer the current lane over other lanes; 

it means the current lane is likely to have a higher utility. 

The driver may be consistent in his behavior. Thus, another important variable that 

may affect the driver's target lane is the target lane that the driver previously chose. For 

example, suppose that the right lane is the target lane chosen by the driver in the 

previous time. Therefore, the right lane is likely to have a high utility capturing the 

consistency on the driver's behavior and the dependency on the target lane over the two 

consecutive time periods.  

There are up to four components that compose the systematic utility of a lane:  

• Utility component consisting of the characteristics of the lane.  

• Utility derived from the relative position of the lane with respect to the current 

lane. 
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• Utility derived from the state dependence. 

• Utility component derived from the path plan of the vehicle. 

 

Different choice models are obtained depending on the assumption made about the 

distribution of the error terms ( )TL
n tε . Assuming that these random terms are 

independently and identically Gumbel distributed, choice probabilities for the various 

lanes, conditional on the individual specific error term ( nυ ) are given by a Multinomial 

Logit model: 

{ }
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∈
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∑                       (3.15) 

Where, 1 |tTLTL TL
t t nXβ ρδ υ−+  is the conditional systematic utility of the alternative 

lane.  

3.2.3 The Gap Acceptance Model 

In the target lane model the driver may choose to stay in the current lane or to target 

changing either to the right lane or to the left lane. Next, conditional on the target lane 

choice, the driver decides by evaluating the gaps, whether or not to change lanes 

immediately using the adjacent gap. Following the model proposed by Toledo et al. 

(2003) and Choudhury (2005), this work uses the same gap acceptance model structure 

used in their works.  

The adjacent gap in the target lane is defined by the lead and lag vehicles in that 

lane as shown in Figure 3.3. The lead gap is the clear spacing between the rear of the 

lead vehicle and the front of the subject vehicle. Similarly, the lag gap is the clear 

spacing between the rear of the subject vehicle and the front of the lag vehicle. Note 

that one or both of these gaps may be negative if the vehicles overlap.  
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Figure 3.3 - The subject, lead and lag vehicles and the gaps they define 

Critical gaps vary for different individuals and with the situation. The driver’s 

critical gaps are the minimum acceptable gaps. They are modeled as random variables 

whose means are functions of explanatory variables. The available lead and lag gaps are 

compared to these ones. An available gap is accepted only if it is greater than the 

critical gap. The individual specific error term captures correlations between the critical 

gaps of the same individual over time. Critical gaps are assumed to follow a lognormal 

distribution to ensure that they are always positive, they are:   

( ),ln ( ) ( ) ( )lead TL cr lead lead TL lead lead
n n n nG t X t tβ α υ ε= + +      (3.16) 

( ),ln ( ) ( ) ( )lag TL cr lag lag TL lag lag
n n n nG t X t tβ α υ ε= + +     (3.17)  

Where,  , ( )lead TL cr
nG t  and  , ( )lag TL cr

nG t  are the lead and lag critical gaps in the target 

lane, measured in meters.  ( )lead TL
nX t  and  ( )lag TL

nX t  are vectors of explanatory variables 

affecting the lead and lag critical gaps, respectively. leadβ  and lagβ  are the 

corresponding vectors of parameters. ( )lead
n tε  and ( )lag

n tε  are normally distributed 

random terms associated with the critical gaps: ( )lead
n tε ~ ( )20, leadN σ and 

( )lag
n tε ~ ( )20, lagN σ . leadα  and lagα  are the parameters of the individual specific random 

term nυ  for the lead and lag critical gaps, respectively. 
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The gap acceptance model assumes that both the lead gap and the lag gap must be 

acceptable in order for the vehicle to change lanes. The probability of changing lane, 

conditional on the individual specific term and the target lane is therefore given by: 

( ) ( )
( ) ( )
( ) ( ), ,

change to target lane| , 1

accept lead gap | , accept lag gap | ,

( ) ( ) | , ( ) ( ) | ,

TL
n t n n t t n

n t n n t n
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P TL P l |TL ,υ
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= = =
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> ⋅ >

 (3.18) 

Where, TL  is the target lane (which requires a lane change). TL
tl  is the lane 

changing indicator for the target lane (the lane changing action): 

1

0
TL
t

a change to lane TL is performed at time t
l

otherwise

=   

)(tG TLlead
n  and )(tG TLlag

n  are the available lead and lag gap in the target lane, 

respectively. )(, tG crTLlead
n  and )(, tG crTLlag

n  are the corresponding critical gaps. 

Assuming that critical gaps follow a lognormal distribution, the conditional 

probability that the lead gap is acceptable is given by: 
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 (3.19) 

Where, [ ]Φ ⋅  denotes the cumulative standard normal distribution.  

Similarly the conditional probability that the lag gap is acceptable is given by: 
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 (3.20) 

The gap acceptance decision is affected by neighborhood variables and path plan 

variables, which are captured by explanatory variables like the subject vehicle’s speed, 

relative speeds with respect to the lead and lag vehicles in the target lane, traffic density 

and indicators for the urgency of the lane change (e.g. the distance to the point the lane 

change must be completed).  

Decisions made at lower levels of the driving behavior decision process are 

conditional on those made at higher levels (e.g. gap acceptance decisions are 

conditional on the target lane choice). The effects of lower level choices on higher-level 

decisions may be captured by introducing the expected maximum utility (EMU) of the 

alternatives at the lower level in the specification of higher-level choices. 

3.2.4 Treatment of the Initial Conditions in the Lane Changing 

Models 

As it was explained above, the treatment of the initial observations is an important 

theoretical and practical problem. Next, the treatment of the initial conditions in the 

lane changing models is presented. 

First, the utility function at the initial observations in the sample to individual n  is 

approximated by:  

* *
0( 0) ( ) (0)TL

n n nU t f X αυ µ= = + +  (3.21) 

Where TL ( 0)nU t =  is the utility function of the alternative of choosing  lane i  as a 

target lane to individual n  at the special case of time 0t =  where the previous state can 

not be modeled. (0)nµ  is assumed to be i.i.d distributed with mean zero. 
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The conditional systematic component of the utility of  lane i  for the initial 

observation is different from the others observations, thus all the parameters for this 

observation are allowed to be different, too. The systematic component of the utility is 

given by: 

{ }*(0) | (0)     1, 2, 3, 4TL TL TL
n n nV X TL Lane Lane Lane Laneυ β= ∀ =      (3.22)  

Where, (0)TL
nX   is the vector of explanatory variables for the special case of 0t = . 

*TLβ is the corresponding vector of parameters for the initial observations.  

Then the model is estimated by the method of maximum likelihood without 

imposing any restriction between the parameters of the structural system and the 

parameters of the approximate reduced form probability function for the initial state of 

the sample. 

 

3.3 The Likelihood Function 

In this section, the likelihood function of lane changing actions observed in the 

trajectory data is presented. 

As discussed in a previous section, there is an important limitation in the dataset; 

explanatory variables related to the driver/vehicle characteristics and to the driver's path 

plan are not available. For example, the path plans of drivers exiting the freeway 

downstream of the observed section are unknown. 

In order to overcome the lack of driver/vehicle characteristics data, the 

driver/vehicle specific latent variables are introduced in the model. These variables 

capture correlations between the decisions made by the same driver over time. The 

individual specific error term nυ  is included in the specification of the target lane and 

in the gap acceptance utility functions. The parameters associated with this variable in 

the various model components are estimated jointly, and so, capture correlations 

between these decisions, which may be attributed to unobserved driver/vehicle 

characteristics.  
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Variables related to the path plan, such as the distance to an off-ramp the driver 

needs to use are not available for vehicles that exit the freeway downstream of the 

observed section. In order to capture the effect of these variables, a distribution of the 

distance from the downstream end of the road section being studied to the exit points is 

used. It is used a discrete distribution of the distances, based on the locations of off-

ramps downstream of the section. The alternatives considered are the first, second and 

subsequent off-ramps. The probability mass function of distances beyond the 

downstream end of the section to the off-ramps used by drivers is given by:  

( )
( )

( )
( )

1
1

2
2

3
1 21

n

first downstream exit d

p d sec ond downstream exit d

otherwise d

π

π

π π

=  − −
 (3.23) 

Where, 1π  and 2π  are the parameters to be estimated. They are the proportions of 

drivers using the first and second downstream off-ramp, respectively. 1d , 2d  and 

3d are the distances beyond the downstream end of the section to the first, second and 

subsequent exits, respectively. 

The first and second exit distances (1d  and 2d ) are measured directly from 

geometric information. For the subsequent exits an infinite distance is used (3d = ∞ ), 

which corresponds to an assumption that drivers that use this exits ignores path plan 

consideration in the lane choice. The parameters of this distribution are estimated 

jointly with the other parameters of the model. In this way in stead of handling with 

missing data and unobserved driver/vehicle characteristics, the likelihood function can 

be formulated.  

The joint probability density of a combination of target lane (TL ) observed for 

driver n  at time t  , TL  for driver n  at time 1t −  and lane action ( l )  observed for 

driver n  at time t , conditional on the individual specific variables,nυ , and the distance 

to the exit point, d , is given by:  

( ) ( ) ( )1 1 1, , | , | , , | , ( | , )n t t t n n n t t n n n t t n n t n nP TL TL l d P TL TL d P l TL P TL dυ υ υ υ
− − −

=      (3.24) 
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Where, ( )1| , ,n t t n nP TL TL d υ
−

 and ( )| ,n t t nP l TL υ  are given by Equations (3.15) and 

(3.18), respectively. 1( | , )n t n nP TL d υ−  is calculated recursively using Equation (3.25): 

2

1 1 2 2( | , ) ( | , , ) ( | , )
t

j i i
n t n n n t t n n n t n n

i TL

P TL d P TL TL d P TL dυ υ υ
−

− − − −
∈

= ∑  (3.25) 

Therefore given the initial probabilities 0( | , )n n nP TL d υ , these values can be 

calculated for any t . 

Only the lane changing actions are observed. The marginal probability of the lane 

action is given by summing the target lane out of the joint probability: 

( )
1

1| , ( , , | , )
t t

j i
n t n n n t t t n n

j TL i TL

P l d P TL TL l dυ υ
−

−
∈ ∈

= ∑ ∑  (3.26) 

The behavior of driver n is observed over a sequence of T consecutive time 

intervals. With the assumption that, conditional on nd  and nυ , these observations are 

independent, the joint probability of the sequence of observations is the product of the 

probabilities given by:  

( )
1

1
1 1

| , ( , , | , ) ( | , )
t

t t

T T
j i

n n n n t t t n n n n n
t j TL i TL t

P d P TL TL l d P l dυ υ υ
−

−
= ∈ ∈ =

= =∏∑ ∑ ∏l  (3.27) 

Where, l are the sequences of lane changing decisions. It is important to note that 

1( | , )n t n nP TL d υ
−

was calculated recursively, therefore Equation (3.27) depends on the 

initial conditions.  

The unconditional individual likelihood function is acquired by integrating (or 

summing, for the discrete variable nd ) the conditional probability over the distributions 

of the individual specific variables: 

( | , ) ( ) ( )n n n n
d

L P d p d f d
υ

υ υ υ= ∑∫ l   (3.28) 
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Where, ( )p d  is given by Equation (3.23) and ( )f υ  is the standard normal 

probability density function.  

Assuming that observations of different drivers are independent, the log-likelihood 

function for all N individuals observed is given by: 

( )
1

ln
N

n
n

L L
=

=∑  (3.29) 

The maximum likelihood estimates of the model parameters are found by 

maximizing this function. In this work, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

optimization algorithm implemented in the statistical estimation software GAUSS 

(Aptech Systems 1994) was used. BFGS is a quasi-Newton method, which maintains 

and updates an approximation of the Hessian matrix based on first-order derivative 

information (see, for example, Bertsekas 1999). GAUSS implements a variant of BFGS 

due to Gill and Murray (1972), which updates the Cholesky decomposition of the 

Hessian (Aptech Systems 1995). 

The integrals in the likelihood function were calculated numerically using the 

Gauss-Legendre quadrature method (Aptech Systems 1994). Numerical integration is 

expected to perform better than Monte-Carlo integration in the application at hand 

because of the presence of the reaction time dimension: Monte-Carlo integration would 

require explanatory variable values, lagged by the reaction time, to be calculated for 

each draw. In contrast, with numerical integration only the explanatory variables values 

for the (much fewer) points used for the integration need to be calculated.  

The likelihood function is not globally concave. For example, if the signs of all the 

coefficients of the individual-specific error term nυ  are reversed, the solution is 

unchanged due to its symmetric distribution function. To avoid obtaining a local 

solution, different starting points were used in the optimization procedure. 

3.4 Summary   

In this chapter, mathematical formulations of the different components of the lane 

changing model were presented. The proposed modeling of lane changing allows 
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behaviors that were not modeled previously, such as the state dependency behavior to 

facilitate lane changing to be captured.  

At the beginning of the chapter different possible modeling structures that allow 

capturing state dependency were discussed. A model specification that accounts for a 

full state dependency was presented. However this model is computationally 

demanding. Another alternative specification, a static model, which is based on the 

concept of partial short-term plan, was proposed. This approach captures the effect of 

evolving conditions on driving behavior in an indirect way. It assumes that drivers 

make repeated instantaneous decisions. State dependencies are not explicitly modeled, 

but it is assumed that they are captured by the change in the explanatory variable 

values.  

Finally, a lane changing model that captures drivers' lane changing behavior under 

the assumption of stability on the behavior was developed using HMM structures 

within the model.  

Similarly to past models, several mechanisms are available within the model 

structure to capture inter-dependencies between the various decisions made. Decisions 

made at lower levels of the driving behavior decision process are conditional on those 

made at higher levels. In addition, individual-specific latent variables may be 

introduced in the various choice models to capture correlations between the decisions 

made by a given driver that are the result of unobserved driver and vehicle 

characteristics.   

In the proposed target lane model, the driver selects the lane with the highest utility 

as his target lane and makes lane changes based on this choice. A lane change occurs in 

the direction implied by the target lane depending on gap availability. Furthermore, the 

choice of the driver is dependent on the target lane that the driver chose in the past.  

The state dependence creates dependence on the initial conditions. However, in this 

model the dependence is on the latent state and therefore the initial conditions are not 

observable. Furthermore, the first time a subject is observed does not correspond to any 

natural starting point and instead, it is determined by the location and capabilities of the 

data collection system. To overcome the limitation, we adapted an approach proposed 

by Heckman (1981), which approximates the distribution of the initial condition, 

conditional on the individual-specific error term.  Therefore, the utility function for the 



 42 

initial observations for each driver is allowed to differ from that of the other 

observations. 

At the end of the chapter, the joint likelihood function for the target lane selection 

and gap acceptance observed in the trajectory data has been derived.  
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Chapter 4  

Data for Model Estimation 

In this chapter, the data requirements for estimation of the model are discussed. 

Also, the characteristics of the collection site and the dataset used for model estimation 

in this thesis are summarized.   

4.1 The Collection Site 

Trajectory data, which consists of observations of the positions of vehicles at 

discrete points in time, provides useful information about the explanatory variables 

used for the proposed target lane model. Trajectory data points are equally spaced in 

time with short time intervals between them, typically 1 second or less. Speeds, 

accelerations and lane changes are extracted from the time series of positions. 

Additional explanatory variables required by the model, such as relations between the 

subject and other vehicles (e.g. relative speeds, time and space headways, lengths of 

gaps in traffic) may also be inferred from the raw dataset.  The driver specific attributes 

are however not directly measurable but these characteristics can be captured by 

introduction of latent variables to capture correlations among different decisions made 

by the same driver. 

The dataset used in this study was collected in 1983 by FHWA in a four-lane 

section of Interstate 395 (I-395) Southbound in Arlington, Virginia, through video 

cameras. It is 997 meters in length and includes an on-ramp and two off-ramps. The 

section is shown schematically in Figure 4.5. An hour of data at a rate of 1 frame per 

second was collected through aerial photography of the section. A detailed technical 

description of the systems and technologies used for data collection and reduction is 

found in FHWA (1985). The dataset, smoothed by Toledo (2003) using a local 
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regression procedure, contains observations of the position, lane and dimensions of 

every vehicle within the section every 1 second. 

 

Figure 4.1 - The I-395 data collection site  
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This dataset is particularly useful for estimation of lane changing models because of 

the geometric characteristics of the site: it is 997 meters long with two off-ramps and an 

on-ramp. It is one of the longest sites for which trajectory data is available, and so, is 

best suited to capture short-term planning, anticipation and non-myopic considerations. 

The ramps within the site provide path plan information for the various vehicles. 

Moreover, the fact that three distinct path plans (i.e. staying in the freeway or taking the 

first or second off-ramp) are represented within the site creates the variability that is 

needed to capture these effects.  

4.1.1 Characteristics of the Estimation Dataset  

The vehicle trajectory data of the various vehicles in the section and the speeds and 

accelerations derived from these trajectories are used to generate the required variables.  

The resulting estimation dataset includes 442 vehicles for a total of 15632 

observations at a 1 second time resolution. On average a vehicle was observed for 35.4 

seconds (observations). All the vehicles are first observed at the upstream end of the 

freeway section. At the downstream end, the majority of traffic (76%) stays in the 

freeway. The 8% and 16% of vehicles, which exit the section using the first and second 

off-ramps (shown in Figure 4.1) respectively, are useful to capture the effect of the path 

plan on driving behavior. The breakdown of the destinations of vehicles is shown in 

Table 4.1.  

Table 4.1 - Breakdown of vehicles by destination 

Destination # of vehicles  

Freeway 337 (76%) 

1 st  ramp  35 (8%) 

2 nd ramp  70 (16%) 

 

Lane-specific variables like lane density, lane speed, and percentage of heavy 

vehicle have been calculated from the raw dataset. The variation of lane-specific 

variables across the different lanes is summarized in Table 4.2.  
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Table 4.2 - Variations of Lane-specific Variables  

 Lane 1  Lane 2 Lane 3 Lane 4   Segment 

Average Density d/s, veh/km/lane 28.41 28.29 28.64 26.56 29.22 

Average Density u/s, veh/km/lane 29.86 30.06 30.52 28.29 29.22 

Average Speed, m/sec.   14.22 15.79 16.23 17.50 15.75 

 

The same dataset has been used by Toledo (2003) and Choudhury (2005) in 

estimating lane changing models. The detailed characteristics of the dataset 

documented by them are summarized below:   

Speeds in the section range from 0.4 to 25.0 m/sec. with a mean of 15.6 m/sec..  

Densities range from 14.2 to 55.0 veh/km/lane with a mean of 31.4 veh/km/lane. 2% of 

the vehicles are categorized as heavy vehicles (length over 9.14 meters or 30 feet).  

Acceleration observations vary from -3.97 to 3.99 m/sec2. Drivers are accelerating 

in 52% of the observations. The level of service in the section is D-E (HCM 2000). The 

vehicles the subject interacts with and the variables related to these vehicles are shown 

in Figure 4.2. Relative speeds with respect to various vehicles are defined as the speed 

of these vehicles less the speed of the subject. Table 4.3 and 4.4 summarize statistics of 

the variables related to the subject vehicle and the vehicle in front respectively.  

 

        traffic direction 
 

 

Lag                                 Lag                                      Lead                                       Lead         
vehicle                         spacing                                  spacing                                    vehicle 

 

                      subject                                        Front                                                                Front   
                      vehicle                                       spacing                                                             vehicle 
 

Figure 4.2 - The subject, front, lead and lag vehicles and related variables 
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Table 4.3 - Statistics of variables related to the subject vehicle  

Variable Mean Std Median Minimum Maximum 

Speed (m/sec)  15.6 3.1 15.8 0.4 25 

Acceleration (m2/sec)  0.05 1.21 0.05 -3.97 3.99 

                  Positive 0.96 0.76 0.78 0 3.99 

                  Negative -0.93 0.75 -0.74 -3.97 0 

Density (veh/km/lane) 31.4 6.5 30.8 14.2 55.0 

Table 4.4 - Statistics of relations between the subject and the front vehicle  

Variable Mean Std Median Minimum Maximum 

Speed (m/sec) 15.8 3.2 16.0 0.2 25.0 

Relative speed (m/sec) 0.2 1.7 0.2 -8.6 9.7 

Spacing (m) 26.6 21.2 20.4 1.4 250.5 

Time headway (sec) 2.0 1.4 1.7 0.3 27.3 

 

The distributions of speed and acceleration in the data are shown in Figure 4.3.   

 

Figure 4.3 - Distributions of speed and acceleration in the data  

The distributions of density and time headway in the data are shown in Figure 4.4.  
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Figure 4.4 - Distributions of density and time headway in the data  

Lane selection and gap acceptance behaviors are captured by observing lane changes 

drivers perform. An important factor in these behaviors is drivers' desire to follow their 

path. In this dataset drivers have three possible destinations, each with a corresponding 

path following behavior:  

  

• Exiting the section through the first off-ramp.   

• Exiting the section through the second off-ramp.  

• Staying in the freeway at the downstream end of the section.  

 

Table 4.5 describes the distribution of observed lane changes by direction (right, 

left) and by destination. It is worth noting that many of the vehicles that exit the section 

through the off-ramps are observed in the right-most lane at the upstream end of the 

section. This indicates that they may have started considering the path plan constraint 

earlier. As a result the coefficients of explanatory variables related to the path plan may 

be biased towards aggressive behaviors since the more timid drivers are discounted in 

the dataset.     

Table 4.5 - Distribution of lane changes by direction and destination 

Destination  Right Left 
Total  123 74 
Freeway  71 71 
1 st ramp  12 0 
2 nd ramp  40 3 



 49 

Table 4.6 - Statistics describing the lead and lag vehicles 

Variable Mean Std Median Minimum Maximum 

Relations with Lead vehicle 

Relative Speed (m/sec)  0.2 
(0.0) 

2.6 
(2.9) 

0.5 
(0.1) 

-17.3 
(-17.5) 

8.1 
(15.5) 

Lead spacing (m) 22.2 
(19.6) 

21.9 
(39.9) 

14.1 
(13.0) 

0.04 
(-18.1) 

117.9 
(268.9) 

Relations with Lag vehicle 

Relative speed (m/sec) -0.4 
(0.0) 

2.2 
(2.7) 

-0.3 
(0.0) 

-6.7 
(-15.0) 

5.2 
(14.1) 

Lag Spacing (m) 23.1 
(18.6) 

20.6 
(23.0) 

16.6 
(12.0) 

1.7 
(-18.1) 

110.1 
(232.6) 

Statistics are for the accepted gaps only, in parenthesis for the entire dataset 

 

The relations between the subject and the lead and the lag vehicles in the lanes to its 

right and to its left, affect the gap acceptance and gap choice behaviors. Table 4.6 

summarizes statistics of the accepted lead and lag gaps (i.e. the gaps vehicle changed 

lanes into). Accepted lead gaps vary from 0.04 to 117.9 meters, with a mean of 22.2 

meters. Accepted lag gaps vary from 1.7 to 110.1 meters, with a mean of 23.1 meters. 

No significant differences were found between the right and left lanes. Relative speeds 

are defined as the speed of the lead vehicle or the lag vehicle less the speed of the 

subject. Statistics for the entire dataset are also shown. With these statistics, negative 

spacing values indicate that the subject and the lead vehicle partly overlap (this is 

possible because they are in different lanes). As expected, the mean accepted gaps are 

larger than the mean gaps in the traffic stream. Similarly, lead relative speeds in 

accepted gaps are larger than in the mean of the dataset and lag relative speeds are 

smaller in the entire dataset (i.e. on average, in accepted gaps the subject vehicle is 

slower relative to the lead vehicle and faster relative to the lag vehicle compared to the 

entire dataset). 

The distributions of relative speeds and spacing, with respect to the front, lead and 

lag are shown in Figure 4.5 and Figure 4.6, respectively. 
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Figure 4.5 - Distributions of relative speed with respect to the front, lead and lag 

vehicles 
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Figure 4.6 - Distributions of spacing with respect to the front, lead and lag vehicles. 

4.2 Initial Observations 

As was explained in chapter 3, the estimation of the model allows the utility 

function of the initial observation to differ from the subsequent ones. Therefore, we 

next present summary statistics for the initial observation for each driver. 
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In the dataset, all the vehicles are first observed at the upstream end of the freeway 

section that it is situated 815 m upstream of the first off ramp. Table 4.6 summarizes 

statistics of the variables related to the subject vehicle and the vehicle in front for the 

initial observations. 

Table 4.7 - Statistics of variables related to the subject vehicle and the vehicle in front 

for the initial observations 

Variable Mean Std Median Minimum Maximum 

Speed (m/sec)  15.5 3.0 15.7 6.0 22.3 

Relations with the front vehicle 

Speed (m/sec) 15.6 3.1 16.0 6.1 24.5 

Relative speed (m/sec) 0.1 1.9 0.2 -8.3 7.5 

 

As we can see, the values we obtain for the initial observations are in the same 

range of the other observations. On one hand the speeds in the section range from 0.4 to 

25.0 m/sec. with a mean of 15.6 m/sec. and on the other hand the speeds for the initial 

observation range from 6 to 22.3 m/sec. with a mean of 15.5 m/sec. From the mention 

above we can conclude that the Initial Observation has the same behavior that the other 

observations. This conclusion allows to us to suppose that the first observation of our 

data will constitute the initial observation of it. This statement permits to us to build our 

model in a simpler way.  

4.3 Summary  

In this chapter, the data requirements for estimation of the proposed model were 

discussed. Trajectory data, which consists of observations of the positions of vehicles at 

discrete points in time, is a useful basis to infer variables that may explain driving 

behavior.  

The characteristics of the collection site and the dataset used for model estimation 

in this thesis were summarized. Trajectory data from I-395 Arlington, VA was used to 

estimate the model parameters. This dataset is particularly useful for estimation of the 

model because of the geometric characteristics of the site: the site is 997 meters long 
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with two off-ramps and an on-ramp and therefore includes weaving sections that may 

exhibit behaviors represented in the proposed lane changing model, such as short-term 

planning and anticipation and capture the effect of the path plan on driving behavior.  

The data represents a wide range of traffic conditions. Speeds range from 0.4 to 

25.0 m/sec. Densities range from 14.2 to 55.0 veh/km/lane. The level of service in the 

section is D-E.  

The values for the initial observation variables are in the same range of the other 

observations, which allows us to assume that the there is no difference between the 

behavior of the initial observation and the behavior of the other observations. 
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Chapter 5  

 

Estimation Results 

In this chapter, estimation results of the proposed lane changing model using the 

Arlington, VA dataset are described. All components of the model were estimated 

jointly using a maximum likelihood estimation procedure. Statistical assessment and 

behavioral interpretation of the results are presented. A discussion of the estimation 

results of the various components is also presented. 

5.1 Estimation Results 

The estimation results of the proposed lane changing model with the data from I-

395 section are presented in Table 5.1. All components of the model were estimated 

jointly using a maximum likelihood estimation procedure as described in a previous 

chapter. However, in order to simplify the presentation, estimation results for the 

various components of the model are discussed separately. The discussion order follows 

the hierarchy of the hypothesized decision-making process: the target lane model is 

presented first, followed by the gap acceptance model. 
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Table 5.1 - Estimation results of the lane changing model 

 
Variable 

Parameter 

values  

T-

statistic 

Target lane Model 

Lane 1  constant -1.859 -3.43 
Lane 2  constant -0.649 -2.034 
Lane 3 constant -0.034 -0.18 
Current lane dummy (CL) 3.264 14.10 

Lane Attributes 

More than one lane change from the CL -4.132 -1.97 
Front vehicle spacing, m. 0.026 4.09 Neighborhood 

Variables Relative front vehicle speed, m/sec. 0.134 2.67 

Path plan impact, more than one lane change 
required to the next exit. 

-2.604 -5.98 

Next exit dummy, lane change(s) required. -1.624 -3.04 
Exponent of remaining distance, θMLC. -1.283 -2.67 
Probability of taking 1st exit, π1 0.0002 0.01 

Path-plan 

Variables 

Probability of taking 2nd exit π2 0.047 2.044 
Coefficient of aggressiveness, Lane 1, αlane1. 1.143 3.02 
Coefficient of aggressiveness, Lane 2, αlane2. 0.270 0.96 
Coefficient of aggressiveness, Lane 3, αlane3. 1.803 6.46 

Heterogeneity 

Coefficient of aggressiveness, Lane 4, αlane4. 0.453 1.84 
State 

Dependence 

Variable 

ρPersistence dummy,  0.131 4.53 

Initial Current lane dummy  4.804 1.84 
Initial Path plan impact, more than one lane 
change required 

-1.309 -1.99 
Initial 

Conditions 

Variables Initial Front vehicle spacing, m -0.017 -1.92 

Lead Critical Gap 

Constant 1.706 6.03 
Relative lead speed positive, Max (∆Snt

lead,0) , m/sec -6.323 -3.31 
Relative lead speed negative, Min (∆Snt

lead,0) , m/sec -0.155 -2.51 
Heterogeneity coefficient of lead gap, αlead 0.099 0.35 
Standard deviation of lead gap, σlead 0.939 4.18 

Lag Critical Gap 

Constant 1.429 5.63 
Relative lag speed positive, Max (∆Snt

lag,0) , m/sec 0.512 5.84 
Heterogeneity coefficient of lag gap, αlag 0.211 1.27 
Standard deviation of lag gap, σlag 0.775 5.87 
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5.1.1 The Target Lane Model 

This model describes drivers’ choice of lane they would want to travel in. The 

target lane choice, are affected by different classes of variables:  

• Lane-specific variables: These variables include distance of the lane with 

respect to the current lane (indicated by the number of lane changes required 

to reach the lane), position of the lane in the roadway, special attributes of the 

lane if any (e.g. exclusive lane or not).   

• Neighborhood variables: These variables describe the subject vehicle and its 

relations with surrounding vehicles. Variables in this group include relative 

speeds and spacing with respect to the vehicle in front of in neighboring lanes. 

• Path plan variables: These variables capture the effect of the path plan on 

drivers' decisions. Variables in this group include distances to the point where 

the driver must be in specific lanes to follow his path, the number of lane 

changes required to be in the correct lanes and indicators of whether the driver 

needs to take the next off-ramp. 

• Driver specific attributes: The lane changing behavior is also likely to be 

affected by the individual driving style, capabilities and preferences of the 

driver. These variables capture considerations and preferences that are based 

on the driver's knowledge and experience with the transportation system, 

individual characteristics of the driver, such as aggressiveness, and of the 

vehicle, such as speed and acceleration capabilities.  

• State dependence variable: The decisions drivers make over time are not 

independent. This variable captures the effect of the dependence in the lane 

changing decisions drivers make over time such as the lane the driver chose as 

his target lane in the previous time. Then, this variable captures the stability 

and persistence of the drivers' behavior. 

As it was explained above, a group of variables are those capturing the lane-specific 

conditions. The estimated values of the lane-specific constants imply that, everything 

else being equal, the lane 1 – the right-most lane – is the most undesirable. Lanes that 

are more to left are more desirable. This may be the result of drivers’ preference to 

avoid the merging and weaving activity that takes place in that lane.  
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Some of the lane-specific variables are dependent on the current lane of the vehicle. 

The coefficient of the current lane dummy captures the inertia preference to stay in the 

current lane. As expected, the sign of this coefficient is positive. Moreover, the value 

and the sign of the coefficient of the variable that captures the influence of more than 

one lane changes required from the current lane to the target lane denotes the disutility 

associated with choosing target lanes that require more than one lane-changing 

maneuver.  

The variable that captures the state dependence indicates that the utility of a lane 

increases if the target lane chosen by the driver is the same target lane chosen in the 

previous time period. As expected the sign of this coefficient is positive. This implies 

that drivers are persistent in trying to complete a lane change. When the driver assesses 

the situation and selects the immediate action, he takes into account the decisions made 

earlier. This dummy variable is defined: 

, 1
( 1)

0
i TL

n

lane i was the chosen lane at t-1
t

otherwise
δ − =         (5.1) 

With the assumption that all the four lanes have the same attributes and the driver is 

currently in lane 2, Figure 5.1 shows the variation of the probabilities of choosing a 

target lane depending on the target lane that was chosen in the previous time. As 

expected, the figures show that the probability of choosing a lane is the highest if this 

lane was previously chosen and lower if another lane was previously chosen as a target 

lane. Furthermore, we can appreciate from the figures below that the probability of 

choosing a lane is higher if the previously chosen lane had a lower probability of being 

previously chosen. An explanation may be that the probability of continuing with the 

plan increases with its quality. If the driver chose a weak plan (one that has a low 

choice probability), the probability of aborting it and choosing another one is higher 

compared to when the previously selected plan is strong. To illustrate this, suppose that 

the driver is currently in lane 2. The probability of choosing lane 2 is the highest if the 

driver also decided to stay in this lane in the previous time period. However, if the 

previously chosen lane is not lane 2, the probability of choosing lane 2 in the current 

time period is highest if lane 4 was previously chosen and lowest if lane 3 was 
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previously chosen. This is also the reverse order of the probabilities of choice of these 

lanes.  

From the above example we can conclude that the probability of giving up a 

previously chosen target lane is lower when that lane has a high choice probability. 
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Figure 5.1 - Variation of the probability of choosing a lane, depending on the 

previously chosen lane when the current lane is Lane 2  
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Figure 5.1 - Variation of the probability of choosing a lane, depending on the 

previously chosen lane when the current lane is Lane 2 (cont.) 

Another group of variables are those capturing driving conditions in the immediate 

and extended neighborhood of the vehicle. The speed and spacing of the front vehicle 

(only appearing in the utility of the current lane) capture the likely satisfaction of the 

driver with conditions in the current lane. As expected, the sign of these coefficients are 

positive, thus the utility of the current lane increases with the speed of the front vehicle 

and with the spacing between the two vehicles. This implies that the subject is less 
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likely to perceive the front vehicle as a constraint when the front vehicle speed is higher 

and the spacing is larger.  

The effect of the path plan is captured by a group of variables, which combine a 

function of the distance to the point where the driver needs to be in a specific lane (i.e. 

in order to take an off-ramp) and the number of lane changes required to be in the 

correct lane. The path plan impact variables indicate that the utility of a lane decreases 

with the number of lane changes the driver needs to perform in order to maintain the 

desired path. The estimation dataset is from a four-lane freeway, in which the off-ramps 

are in the right-most lane. As expected, the utility of a lane decreases if the driver needs 

to perform lane changes from it in order to maintain the desired path. This effect is 

magnified as the distance to the off-ramp decreases ( MLCθ = -1.2830). The use of a 

power function to capture the effect of the distance from the off-ramp guarantees that at 

the limits, the path plan impact approaches 0 when ( )exit
nd t →+∞  and approaches −∞  

when ( ) 0exit
nd t →+ .   

Figure 5.2 shows the variation of the probability of choosing lane 1 when the driver 

needs to take the next exit and his current lane is Lane 2, as a function of the distance 

from the off ramp for the following two different cases: lane 1 was the targeted lane in 

the previous time and another lane (lane 2, 3 or 4) was the targeted lane in the previous 

time period. 

In the example, Lane 1 is the closest to the exit. We can note that when the driver is 

far from the desired exit, the probability of choosing lane 1 as the target lane is low. As 

the distance to exit decreases, the probability of choosing lane 1 gradually increases. 

When the driver is very close to the exit the probability of lane 1 becomes as highest as 

possible. 

Moreover, we can appreciate in the figure that with the assumption that the driver is 

at the same distance from the off ramp, the probability of choosing lane 1 is higher if 

the driver already decided to change to this lane in the previous time period.  
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Figure 5.2 – Predicted Probabilities of choosing the target lane closest to an off-ramp 

used in the path. 

Drivers' perception and awareness of path plan considerations is likely to be a 

function of the geometric elements of the road. In particular, drivers are more likely to 

respond to constraints that involve the next road element they will encounter. In the 

road section used for estimation, such behavior would present itself for drivers who exit 

the freeway using the next off-ramp, as opposed to drivers who will use subsequent 

exits. As with the impact of the distance, explanatory variables are generated by 

interaction of a next-exit dummy variable with the number of lane changes required. As 

expected, the estimated coefficient for this variable is negative and then, the utility of a 

lane decreases if there is more than one lane change required in order to take the next 

exit.  

The last group of variables is those capturing the driver specific attributes. The 

heterogeneity coefficients,  1laneα ,  2laneα ,  3laneα and  4laneα , capture the effects of the 

individual specific error term nυ  on the target lane choice, thus accounting for 

correlations between observations of the same individual due to unobserved 

characteristics of the driver/vehicle.  1laneα  and  3laneα are more positive compared with 
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 2laneα  and   4laneα . In the data collection site there are two roads that are merged. Then, 

we can understand that lane 1 and lane 3 are the right-most lanes of each one of the 

roads that met in this section. The estimated parameters are positive and so, nυ  can be 

interpreted as positively correlated with the driver's timidity. A timid driver (i.e. 0nυ > ) 

is more likely to choose the right lane over the left one compared to a more aggressive 

driver.  

In summary, the target lane utilities are given by: 

, , , , /
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,

0.026 0.134
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2.604 1.624
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 (5.2) 

Where, iβ  is the constant of  lane i . ,i front
ntX∆  and ,i front

ntS∆  are the spacing and 

relative speed of the front vehicle in  lane i , respectively. , /i adj CL
ntδ  is an indicator with 

value 1 if i  is the current or an adjacent lane, and 0 otherwise. Similarly, ,i CL
ntδ  has 

value 1 if i  is the current lane, and 0 otherwise. , 1i CL
ntδ ∆ >  is an indicator with value 1 if 

the lane i  involves more than one lane changes from the current lane, and 0 otherwise. 

exit
ntd  is the distance to the exit driver n  intends to use. iExit∆  is the number of lane 

changes required to get from lane i  to the exit lane. next  exit
ntδ  is an indicator with value 1 

if the driver intends to take the next exit, and 0 otherwise. i, EXIT 1
ntδ ∆ ≥  is an indicator with 

value 1 if there is involved a lane change in order to take the next exit (lane i  is not the 

exit lane) , and 0 otherwise. i,TL
nδ  is an indicator with value 1 if the target lane in time t  

is the same target lane that was chosen in time 1t − . 

5.1.2 The Gap Acceptance Model 

The gap acceptance behavior is conditioned on the driver targeting either the right 

lane or the left lane. In these cases, the driver is assumed to evaluate the available 

adjacent gap in the target lane and decide whether to change lanes immediately or not. 
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In order for the gap to be acceptable both the lead and lag gaps, shown in 5.3, must be 

acceptable. Otherwise, it is not safe for the driver to do lane changing. 

  

 

Figure 5.3 - The subject, front, lead and lag vehicles and related variables 

Both the lead and lag critical gap are a function of the subject relative speed with 

respect to the corresponding vehicles. Relative speed with respect to a vehicle is 

defined as the speed of that vehicle less the speed of the subject.  

The lead (or lag) gap is acceptable only if the available gap is larger than an 

unobservable critical lead (or lag) gap, which is the minimum acceptable gap. In order 

to ensure that critical gaps are always positive, they are assumed to follow a lognormal 

distribution:   

( ),ln ( ) ( ) ( )lead TL cr lead lead TL lead lead
n n n nG t X t tβ α υ ε= + +  (5.3)  

( ),ln ( ) ( ) ( )lag TL cr lag lag TL lag lag
n n n nG t X t tβ α υ ε= + +  (5.4)  

Where, , ( )leadTL cr
nG t  and , ( )lagTL cr

nG t  are the lead and lag critical gaps in the target 

lane, measured in meters. )(tX TLlead
n  and )(tX TLlag

n  are vectors of explanatory variables 

affecting the lead and lag critical gaps, respectively. leadβ  and lagβ  are the 

corresponding vectors of parameters. )(tlead
nε  and )(tlag

nε  are the random terms 

associated with the critical gaps for driver n at time t. These error terms are normally 
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distributed: ( )lead
n tε ~ ( )20, leadN σ  and ( )lag

n tε ~ ( )20, lagN σ . leadα  and lagα  are the 

parameters of the individual specific random term nυ  for the lead and lag critical gaps, 

respectively. 

The estimated lead and lag gaps are given by equations (5.5) and (5.6) respectively: 
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ε
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The lead critical gap decreases with the relative lead speed, i.e., it is larger when the 

subject is faster relative to the lead vehicle. The effect of the relative speed is strongest 

when the lead vehicle is faster than the subject. In this case, the lead critical gap quickly 

reduces to almost zero, as the relative speed is increasingly positive. This result 

suggests that drivers perceive very little risk from the lead vehicle when it is getting 

away from them.  

Inversely, the lag critical gap increases with the relative lag speed: The faster the 

lag vehicle is relative to the subject, the larger the lag critical gap is. In contrast to the 

lead critical gap, the lag gap does not diminish when the subject is faster. An 

explanation may be that drivers have a less reliable perception of the lag gap compared 

to the lead gap (due to the indirect observation of lag gaps through mirrors). Therefore, 

drivers may keep a minimum critical gap as a safety buffer.      

Median lead and lag critical gaps, as a function of the relative speeds are presented 

in Figure 5.4. 
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Figure 5.4 - Median lead and lag critical gaps as a function of relative speed 

Estimated coefficients of the unobserved driver characteristics variable, nυ , are 

positive for both lead and lag critical gaps. Hence, the variable can be interpreted as 

positively correlated with the characteristics of a timid driver who requires larger gaps 

for lane changing compared to more aggressive drivers who require smaller gaps for 

lane changing.   
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5.1.3 Statistical Test for Model Selection 

In this section, model selection tests are performed based on the likelihood function 

values at convergence of different lane changing models: the explicit target lane model 

proposed by Choudhury (2005) but simplified; the lane changing model that takes into 

account the state dependence with initial values for all the variables and the lane 

changing model that takes into account the state dependence with initial values for 

some of the variables. Estimation results for the different models are presented in 

Appendix A. 

The lane changing model that takes into account the state dependence extends the 

lane changing model with explicit target lane choice proposed by Choudhury (2005). 

The model with explicit target lane choice can be viewed as nested within the model 

with state dependence, and therefore classic statistical tests can be applied to select 

between them. Thus, likelihood ratio tests for model selection are applicable. 

The likelihood ratio test (LRT) is a statistical test of the goodness-of-fit between 

two models. A relatively more complex model is compared to a simpler model to see if 

it fits a particular dataset significantly better. The LRT begins with a comparison of the 

likelihood scores of the two models:  

2( )u rLR L L= −  (5.7) 

 Where uL  is the likelihood score of a model (unrestricted model) and rL is the 

likelihood score of the nested model (restricted model). This LR  statistic approximately 

follows a chi-square distribution. To determine if the difference in likelihood scores 

among the two models is statistically significant, we next must consider the degrees of 

freedom. In the LRT, degrees of freedom are equal to the number of additional 

parameters in the more complex model.  

The maximum likelihood values and numbers of parameters of the different models 

are presented in  

Table 5.2. 
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Table 5.2 - Likelihood values of the estimated models 

Model Likelihood value Parameters 

Explicit Target Lane Choice Model -880.35 25 

State Dependence Model with initial 

values for all the variables 
-874.97      38 

State Dependence Model -876.19 29 

 

We first apply the LRT between the Explicit Target Lane Choice Model and the 

State Dependence Model with initial values for all the variables: 

2( 874.97 880.35) 10.76LR = − + =  (5.8) 

Degrees of freedom: 13 

The critical value of chi-square distribution with 13 degrees of freedom and a 

probability of 0.90 of exceeding the critical value is 19.81. 

 Adding additional parameters always result in a higher likelihood value. However, 

when adding additional parameters is no longer justified in terms of significant 

improvement in fit of a model to a particular dataset. In our case, the results of this test 

show that the State Dependence Model with initial values for all the variables does not 

better fit the data than the Explicit Target Lane Choice Model. 

Then, we apply the LRT between the Explicit Target Lane Choice Model and the 

State Dependence Model with initial values for some of the variables: 

2( 876.19 880.35) 8.32LR = − + =      (5.9) 

Degrees of freedom: 4 

The critical value of chi-square distribution with 4 degrees of freedom and a 

probability of 0.90 of exceeding the critical value is 7.8. 
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In this case, the results show that the State Dependence Model (with initial values 

for some of the variables) better fits the data, and therefore should be selected for 

prediction.   

5.2 Summary 

In this chapter, estimation results of the target lane model using Gauss statistical 

estimation software has been presented.  

Estimation results for the target lane model indicate significant influence of 

different types of variables: lane-specific attributes, captured for example by the 

position of the driver; variables that capture driving conditions in the immediate and 

extended neighborhood of the vehicle, for example the speed of the vehicle in front of 

the subject and the spacing between them; variables that relate to the path plan, which 

combine a function of the distance to the point where the driver needs to be in a specific 

lane (i.e. in order to take an off-ramp) and the number of lane changes required to be in 

the correct lane; variables capturing the driver specific attributes and the variable 

capturing the state dependence.  

This last variable is the one that captures the effect of the dependence in the lane 

changing decisions drivers make over time such as the lane the driver chose as his 

target lane in the previous time. Then, this variable captures the stability and 

persistence of the drivers' behavior. 

Gap acceptance decisions are affected by the subject relative speeds with respect to 

the lead and lag vehicle in the target lane. 

The proposed target lane model includes state dependence. The estimation results 

indicate that the sign of this additional variable in the utility function is logical and 

matches the intuitive expectations.  
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Chapter 6  

Conclusions 

This chapter summarizes the research reported in this thesis and highlights the 

major contributions. Finally, directions for future research are also suggested. 

6.1 Summary of the Work and Results 

Lane changing is usually modeled in two steps: the decision to consider a lane 

change – lane selection process, and the decision to execute the lane change. Modeling 

the lane changing decision process is very complex due to its latent nature and the 

number of factors a driver considers before reaching a decision. The only observable 

part of this process is a successful lane change operation. The exact time at which a 

driver decides to change lanes cannot be observed. Most current models assume that 

drivers make repeated instantaneous decisions. At each point in time the driver assesses 

the situation and selects the immediate action independent of previous decisions. 

However, in reality, the decisions of a driver over time are interdependent. 

Interdependencies among decisions, particularly over the time dimension for the same 

driver are not captured in detail in most of the existing models. For example, the 

persistence of drivers to follow their originally chosen plans, which can lead to state-

dependence, has been ignored in the state-of-the-art models. 

A lane changing model that captures drivers' lane changing behavior under the 

assumption of stability of the behavior was presented in this work. This approach is 

justified by the estimation results for the target lane model, which indicates significant 

dependence in the lane changing decisions drivers make over time. 

A random utility approach has been adopted to model both components of the 

model: the selection of a target lane and gap acceptance. The model structure accounts 
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for correlations among the choices made by the same driver over choice dimensions and 

time that are due to unobserved individual-specific characteristics by introducing a driver-

specific random term. This driver-specific random term is included in all model 

components. Missing data due to the limitations of the data collection are also account for.  

Drivers that target lane changing evaluate the available adjacent gap in the target 

lane to decide whether they can immediately change lanes or not. The gap acceptance 

model requires that both the lead gap and the lag gap are acceptable. Their decision is 

based on comparison of the available gaps to corresponding critical gaps, which are 

functions of explanatory variables. Critical gaps depend on the subject relative speeds 

with respect to the lead vehicle and the lag vehicle in the target lane. 

Statistical tests show that the State Dependence Model does better fit the data than 

previous models and therefore should be selected for prediction.   

6.2 Contributions 

The objective of this research is to improve the modeling of driving behavior and in 

particular the influence of the state dependence in the drivers' behavior. More reliable 

simulation of traffic flow requires driving behavior models that capture stability in the 

driver's behaviors. This thesis contributes to state-of-the-art in driving behavior 

modeling in the following respects: 

• Development of a framework for modeling the lane changing behavior taking 

into account the state dependence between observations of a given driver over 

time and the development of the detailed specifications of the various 

components within the driving behavior model;   

• Most of the existing models where the HMM formalism was applied, did not 

use real data to estimate them, it was used data obtained from a driving 

simulator. Contrarily, the model developed herein is estimated with data that 

was collected in a freeway section from the real world; 

• The parameters of the target lane model were estimated using trajectory data. 

Estimation results show that the state dependence variable is significant in 

lane selection. A significant improvement in goodness of fit is observed over 

previous models;  



 71 

• Estimation results show that the proposed treatment of the initial conditions 

was successful; 

• Most of the applications of the HMM structure for lane changing, focused in 

identifying the intention of the driver using observed behavior (i.e. 

acceleration, steering angle). These models could detect whether or not the 

driver is changing lanes at the time of the observation but did not explain why 

the lane changing is undertaking and so cannot predict lane changes ahead of 

time. The model proposed in this work, permits to explain the driver's 

behavior. 

6.3 Future Research Directions 

The emergence of microscopic traffic simulation tools in the last few years has 

brought about increasing interest in driving behavior modeling.  Some of the directions 

in which further research is needed are presented below: 

• Most of published estimation results of lane changing models are for freeway 

traffic. Similar models need to be developed for urban streets, in which other 

factors and considerations such as bus traffic and pedestrians may affect the 

behavior. 

• There is a lack of information about individuals, such as the level of skill, 

driving abilities and character. A tool to collect the data about the own 

attitudes and characteristics of the drivers need to be developed in order to 

achieve a better understanding of the driver's behavior. 

• The interaction between the lane-changing and acceleration behavior of the 

driver is also ignored in the current model. There is the need to develop more 

detailed driving behavior models based on the concept of generalized target 

lane capable of capturing interdependencies between lane-changing and 

acceleration behaviors.  

• The lane-changing duration is omitted in this work. The acceleration behavior 

of the vehicle changing lanes and of other vehicles around it may be affected 

during the execution of lane changes, but this effect cannot be captured if lane 
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changes are instantaneous. Therefore, a model that capture the duration of lane 

changes needs to be developed. 

• To enhance the ability of the models proposed in this thesis, the model should 

be implemented in microscopic traffic simulators. The impact on traffic flow 

characteristics and the performances of simulators need to be tested. 
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Appendix A 

Estimation Results of Different Lane 

Changing Models 

In this appendix, estimation results of the explicit target lane model proposed by  

(2005) but simplified and the lane-changing model that takes into account the state 

dependence with initial values for all the variables using the Arlington, VA data are 

presented.  

A.1 Explicit Target Lane Model (Simplified) 

The estimation results of the model structure proposed by Charisma (2005) using 

the trajectory data from Arlington, VA are presented in Table A.1.  

Table A.1 - Estimation results of the explicit target lane model (simplified)  

 
Variable 

Parameter 

values 

T-

statistic 

Target lane Model 

Lane 1  constant -1.931 -3.34 

Lane 2  constant -0.683 -2.02 

Lane 3 constant -0.049 -0.25 

Current lane dummy (CL) 3.449 15.38 

Lane Attributes 

More than one lane change from the CL. -4.281 -1.79 

Front vehicle spacing, m. 0.024 3.95 Neighborhood 

Variables Relative front vehicle speed, m/sec. 0.136 2.71 
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Variable 

Parameter 

values 

T-

statistic 

Path plan impact, more than one lane change 

required to the next exit. 

-2.484 

 

-5.67 

Next exit dummy, lane change(s) required. -1.525 -2.92 

Exponent of remaining distance, θMLC. -1.091 -2.75 

Probability of taking 1st exit, π1 0.0002 0.01 

Path-plan 

Variables 

Probability of taking 2nd exit π2 0.057 2.20 

Coefficient of aggressiveness, Lane 1, αlane1. 1.143 1.35 

Coefficient of aggressiveness, Lane 2, αlane2. 0.271      0.34 

Coefficient of aggressiveness, Lane 3, αlane3. 1.788 8.41 

Heterogeneity 

Coefficient of aggressiveness, Lane 4, αlane4. 0.251        0.32 

Lead Critical Gap 

Constant 1.667 5.92 

Relative lead speed positive, Max (∆Snt
lead,0) , m/sec -6.376 -3.30 

Relative lead speed negative, Min (∆Sntlead,0) , m/sec -0.154 -2.49 

Heterogeneity coefficient of lead gap, αlead 0.099         0.34 

Standard deviation of lead gap, σlead 0.931 4.35 

Lag Critical Gap 

Constant 1.394 5.70 

Relative lag speed positive, Max (∆Snt
lag,0) , m/sec 0.513 5.93 

Heterogeneity coefficient of lag gap, αlag 0.211         1.21 

Standard deviation of lag gap, σlag 0.754 5.79 
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A.2 State Dependence Model with Initial Values for all 

the Variables 

 

The estimation results of the state dependence model structure using the trajectory 

data from Arlington, VA are presented in Table A.2. In this model it is proposed an 

initial value for every variable.  

Table A.2 - Estimation results of the state dependence model with initial values for all 

the variables 

 
Variable 

Parameter 

values 

T-

statistic 

Target lane Model 

Lane 1  constant -1.845 -3.54      

Lane 2  constant -0.626 -2.04           

Lane 3 constant -0.007 -0.04           

Current lane dummy (CL) 3.235 14.18          

Lane 

Attributes 

More than one lane change from the CL. -4.146  -2.05          

Front vehicle spacing, m. 0.026 4.17           Neighborhood 

Variables Relative front vehicle speed, m/sec. 0.147 2.94            

Path plan impact, more than one lane change 

required to the next exit. 

-2.617 

 

-6.28           

Next exit dummy, lane change(s) required. -1.610  -2.97       

Exponent of remaining distance, θMLC. -1.309 -2.63       

Probability of taking 1st exit, π1 0.0002 0.01 

Path-plan 

Variables 

Probability of taking 2nd exit π2 0.046 1.99 

Coefficient of aggressiveness, Lane 1, αlane1. 1.063            0.03 

Coefficient of aggressiveness, Lane 2, αlane2. 0.191         0.01 

Coefficient of aggressiveness, Lane 3, αlane3. 1.704            8.59 

Heterogeneity 

Coefficient of aggressiveness, Lane 4, αlane4. 0.423            0.01 
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Variable 

Parameter 

values 

T-

statistic 

State 

Dependence 

Variable 

ρPersistence dummy,  0.148 1.20 

Initial current lane dummy  4.801   1.91       

Initial relative front vehicle speed, m/sec  -0.118 -1.24           

Initial path plan impact, more than one lane 

change required 

 -0.763 

 

1.60            

Initial Next exit dummy, lane change(s) 

required 

 -0.651 

 

0.36           

Initial front vehicle spacing, m -0.016 -1.94            

Initial Exponent of remaining distance, θMLC. -2.512 -0.27           

Initial Probability of taking 1st exit, π1 0.0002 0.001 

Initial Probability of taking 2nd exit π2 0.046 0.001 

Initial lane1 constant  -1.752 0.051         

Initial lane2 constant  -0.982 -0.36          

Initial Lane3 constant  -0.665 -1.01          

Initial 

Conditions 

Variables 

Initial More than one lane change from the 

CL  

-4.151 -0.01          

Lead Critical Gap 

Constant 1.724 6.05     

Relative lead speed positive, Max (∆Snt
lead,0) , m/sec -6.337 -3.29           

Relative lead speed negative, Min (∆Sntlead,0) , m/sec -0.156 -2.50            

Heterogeneity coefficient of lead gap, αlead 0.004           0.01 

Standard deviation of lead gap, σlead 0.947 4.33 

Lag Critical Gap 

Constant 1.467 5.77            

Relative lag speed positive, Max (∆Snt
lag,0) , m/sec 0.513 5.66           

Heterogeneity coefficient of lag gap, αlag 0.153            0.20 

Standard deviation of lag gap, σlag 0.815 5.99 
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  הבעות תודה
 מכו� –תומר טולדו בפקולטה להנדסה אזרחית וסביבתית בטכניו� ' מחקר זה נעשה בהנחיית דר

  .טכנולוגי לישראל
ברצוני , כמו כ�. כבוד לעבוד איתוהתומר טולדו אשר היה לי '  לדראת הערכתיברצוני להביע 

 התמידית ועל היותו מקור התמיכה, נגישותה, ההכוונה המקצועית, על ההנחיההודות לו ל
אפשרו , ו להסביר כל נושא בצורה פשוטהיהתלהבותו ומאמצ. השראה ועמוד השדרה של המחקר

  .זההמחקר  ה ממנו במהל�רבותהשכלתי . את המודלי�ולחוות  לי להמחיש
� התואר וה� לחברה הלאומית לדרכי� בישראל על ברצוני להודות ה� למשרד הקליטה על מימו

  .התמיכה במימוש התואר
על תמיכתו ועל מת� אוירה ,  על הסבלנות האוהבתריאללבעלי גבבקשת להודות אני מ, למעל הכו

להוריי סליה וחיי� העמוקה  תיתודאת ברצוני להביע , כמו כ�. התפתחי ל לשאפשרואהבה ת מלא
.  בחיידבר בכל  שביהמרב לי לתת את התמידי שאפשרוהחיזוק אינסופית ההחמה ותמיכת� על 

 ולאחותי אסתר ומשפחתה הצעירה על י והאוהבחבריחס הג� לאחי יונת� על הנתונה תודתי 
  .היות� ש� בכל עת לה� נזקקתי

 



 I 

 תקציר

תופעה זו . ותבי� עירוניוה� בדרכי� בתחומי� עירוניי� ה�  בעיה גדולה התנועה מהווה גודש 
פיתוח . הבטיחות ואיכות הסביבה, של הניידותוגורמת הרעה  השפעה כלכלית שלילית ת בעלההינ

 �מגיע לידי , הגדולי� בפרט ובתחומי המטרופוליני� ית הגודשיעל מנת להתגבר על בערשת הדרכי
באזורי� רבי� , מזויתרה . מלוא הפוטנציאל של זכויות הדר� המוקצות לכ�של כמעט מיצוי 

 � את סלילת� של דרכי� חדשות או הרחבת� של דרכי� קיימות מגבילי�אילוצי� סביבתיי
  . בעתיד

� התשתיות שלמיטבי  הניהול וניצול לייעושל בשני� האחרונות גברה החשיבות , מתו� כ
של ניהול תנועה ות גדולות מערכ. הקיימות במטרה למזער את הגודש ולמקס� את הבטיחות

. לניהול תנועה צריכי� לעבור כיול ולהיבח�מוצעי� מתודולוגיות ואלגוריתמי� ש. הוצעו ויושמו
�, יתר על כ�. ישימי� עקב עלויות גבוהות וחוסר בהסכמה ציבוריתאינ�  שדה  ניסוייברוב המקרי

ל התנאי� עמלא לשלוט באופ� עקב חוסר היכולת עלולה להיות נמוכה התועלת במבחני שדה אלו 
�  . לכ� נחוצי� כלי� לביצוע הערכות אלו במעבדות. בה� ה� מבוצעי

סימולציה תנועתית המנתחי� -מודלי� של מיקרובשני� האחרונות התפתח שימוש נרחב ב
המודלי� . אמיני� יותרבמודלי� כ� התעורר צור� כתוצאה מ. התנהגות הנהגבצורה מפורטת את 

�: ייכי� לשתי קבוצות עיקריות הששל הסימולציה התנועתית מהווי� סינתזה של מודלי� שוני
את חוזי� המודלי� האחרוני� . נהיגהבמודלי� של בחירת מסלולי� ומודלי� של התנהגות 

�: מימדי�בשני היא עת הרכב תנו. החלטת הנהג ביחס לתנועת רכבו תחת תנאי תעבורה שוני
 �כי המודלי� מכא� ברור .  החלפת נתיב–ותנועה לרוחב ; מהירות/  תאוצה –תנועה לאור

  . סימולציה תנועתית-להחלפת נתיבי� הינ� מרכיב חשוב במיקרו
בחירה של נתיב להחלפה וההחלטה לבצע : נתיבי� ממודלי� בשני שלבי� מודלי� להחלפת

התהלי� של מידול השלב של בחירת הנתיב להחלפה מורכב ביותר ). קבלת פערי�(החלפת נתיב 
. החלטת הנהגעל קיימי� גורמי� רבי� המשפיעי� מצד שני הינו בלתי נצפה ומצד אחד מאחר ו

רוב המודלי� . החלק היחידי שנית� לצפייה בתהלי� הינו הפעולה המוצלחת של החלפת נתיב
 �, כלומר. ת המצב ומקבלי� החלטות בכל רגע מחדשמניחי� כי הנהגי� בוחני� אהיו� הקיימי

בכל רגע הנהג בוח� את המצב ומחליט על הפעולה המיידית בצורה בלתי תלויה בהחלטות 
זוהי אחת . קבלת ההחלטות לאור� הזמ� אינ� בלתי תלויות אחת מהשנייה, א� במציאות. קודמות

את המורכבות של בטא � לבדר� כלל המודלי� לא מצליחי. דלי� הקיימי�המגבלות של המו
ה� לא תופסי� את התלות ההדדית בי� ההחלטות המתקבלות על ידי אותו נהג , הנהגי�התנהגות 

התמיד היכולת של הנהג לאינ� מבטאי� את מייצגי� קבלת החלטות מיידית ו וכ� לאור� הזמ�
  . שקיבל בזמ� קוד�ההחלטה בביצוע 

 �שילוב מאפייני נהגות נסיעה על ידי של התקיימי� מטרת המחקר הינה לשפר מודלי
התנהגות . ת הנהג בעת נסיעתו במודלי� של החלפת נתיבי�וכגו� התמדה בהחלטהתנהגות 

ז "לו, קביעת יעדי�, כגו� תכנו� מסלול(ההתמדה הינה מקובלת באסטרטגיות להחלטות נסיעה 
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את החלפת הנתיב וכ� בניסיונו להשלי� ג� נית� להניח כי הנהג מתמיד ועקבי , מתו� כ�). 'וכו
להניח כי ההחלטות שהנהג מקבל לאור� הזמ� אינ� בלתי תלויות אלא שהינ� קשורות בקשר 

  .הגיוני ועקבי
מיועד לשימוש במקרי� שבה� ) Hidden Markov Model – HMM(המודל של מרקוב נסתר 

 �מודלי� ה. מעבר בי� המצבי� השוני� ומשמש למידול סדרות של נתוני�להתחשב במעונייני
קיי� הלי� נסתר אשר מתפתח ממצב למצב ומאיד� : האלו מתבססי� בשתי הנחות עיקריות

המצב .  זההתהלי� יכולה לתרו� מידע על הלי�מהבחינה של הפעולה הנצפית אשר מושפעת 
  ).Hidden State(אשר מהוות המצב הנסתר , הנצפה הינו התוצאה של ההחלטות הקודמות

במודלי� של החלפת נתיבי� במטרה לכלול HMM -יישו� של החוקר את הנוכחי המחקר ה
אשר נניח שאנו צופי� בנהג , לצור� המחשת הנושא ולדוגמה.  הנהג במודלי�התמדתאת התנהגות 

: א� איננו יודעי� הסיבה שגרמה לו להישאר באותו נתיב, נתיבאותו בשני זמני� רצופי� נשאר ב
הצליח � כי הנהג החליט לבצע החלפת נתיב א� לא הנהג החליט לא לבצע החלפת נתיב או ייתכ

 סדרה של מצבי� ייצרממצב למצב ומעובר , ההלי� של בחירת הנתיב הינו נסתר, כ�.  אותהלממש
�  . נסתרי

התמקדו בזיהוי כוונת ,  במודלי� של החלפת נתיבי�HMM-רוב העבודות שיישמו את ה
). 'זווית כיוו� הרכב וכו, כגו� תאוצה(פעולה הנהג על ידי צפייה בהתנהגות הנהג תו� כדי ביצוע ה

�המודלי� הקיימי� הצליחו לזהות בא� הנהג מבצע פעולה של החלפת נתיב או לא , יתרה על כ
למה (א� ה� לא הצליחו להסביר את המתרחש מאחורי ההתנהגות , באותו רגע של הצפייה

, המודל המוצע במחקר זה. ולכ� ה� לא הצליחו לחזות החלפת נתיבי� בעתיד) הפעולה מתבצעת
� וכ� מצליח לתפוס את ההתמדה לחזות החלפת נתיבי�, מצליח להסביר את התנהגות הנהגי

  .הקיימת בהתנהגות
 �ההחלטה לתחילת ההלי� של החלפת נתיב וקבלת פערי� מושפעי� ה� ממשתני� הקולטי

במטרה לייש� . גאת התכונות הקיימות סביב הנהג ושל הנהג עצמו וה� ממצב ההחלטה של הנה
מה� כאשר לכל אחד ,  נסתרי�עלינו להניח כי לנהג מספר מצבי�, את ההנחות המפורטות לעיל

קיי� צור� לצפות במצב בו נמצא הנהג ולתת , כמו כ�. למצבמיוחסות הסתברויות למעבר ממצב 
 ��  הפנימיי� של הנהג אינא� המצבי�. מצב הנוכחי של הנהג הלעמענה המתבסס במודל שיוש

. הפעולה הנצפיתדר� צור� להשתמש בהלי� של אמידה בלתי ישירה נוצר  לצפייה ולכ� �ניתני
עלינו , ולכ�. הבלתי נצפהמצב ע� ההמתקשר לסדרה של הפעולות הנצפות קיי� יחס הסתברותי 

 אשר מתקיי� בו ה� הלי� בלתי נצפה HMM,-של הבמודל את ההלי� על ידי שימוש למדל 
  .למצבי� הבלתי נצפי�ות  שקשורותנצפפעולות  וה� שמשתנה במהל� הזמ�

נתיב להחלפה בחירת : ימדי�המודלי� להחלפת נתיבי� מסבירי� את בחירת הנהג בשני מ
�המשתני� אמורי� .  במשתני� מסבירי�התועלת של הנתיבי� תלויהת פונקצי. וקבלת פערי

מסלול התכנית לממש את את הצור� של הנהג , בכל אחד מהנתיבי�השוררי�  את התנאי� בטאל
בדר� כלל קיי� חוסר במידע על תכונות הנהגי� .  קטע הכביש�של הנהג עוההכרות ידע את הו

 �, לכ�). 'יכולת של הרכב להשיג מהירויות ותאוצה וכו, מיומנות בנהיגה, כגו� תוקפנות(והרכבי
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קצית התועלת בפונשמבטא את התכונות האישיות של הנהג  לטנטי נעשה שימוש במודל במשתנה
  .  בי� תצפיות של אותו נהג שנוצרות בגלל תכונות האופי שלובמטרה לקלוט את הקורלציות
 �א� במודל המוצע . תלות במצב ההתחלתי של כל המערכתיוצרת התלות במצב הקוד

התצפית הראשונה , בנוס) לכ�. התלות הינה במצב בלתי נצפה ולכ� המצב ההתחלתי אינו נצפה
אלא היא נקבעה על ידי המיקו� ,  תואמת להתחלה האמיתית של ההלי�י� אינהשל בסיס הנתונ

�יוש� הפיתרו� המוצע על ידי , במטרה להתגבר על בעיה זו. והתכונות של מערכת איסו) הנתוני
Heckman) 1981( ,משתנה אשר מבצע קירוב של המצב ההתחלתי כתלות בשגיאה הקשורה ל

המודל מאפשר לפונקצית התועלת של התצפית , כ�. )הנהג (לטנטי וספציפי של האינדיבידואל
הראשונה להיות שונה מיתר התצפיות על מנת לתפוס בעקיפי� את התלות במצב ההתחלתי הלא 

  . .ידוע
על , בכדי לבצע החלפת נתיב נהג הרכב בוח� את הפערי� הקיימי� וממתי� לפער מספיק גדול

פער גדול ( הנהג ל ידירגע שהפער נמצא מתאי� עב. מנת לעבור אל הנתיב אליו הוא חפ1 להגיע
, )הנהג מחלי) לנתיב השמאלי או הימני(התחלת החלפת הנתיב מתבצעת ) יותר מהפער הקריטי

התהלי� הזה מפתח את ). הנהג נשאר בנתיב הנוכחי(אחרת הנהג אינו מבצע את החלפת הנתיב 
  .  של החלפת הנתיביתהפעולה הנצפ

אשר נאספו , ס נתוני� של מסלולי נסיעה מפורטי� של רכבי�המודל נאמד באמצעות בסי
.  נתיבי�4 מטר ובחת� של 997יניה באור� 'בוירג) I-395(ארצי - בקטע של כביש בי�1983בשנת 

שמאפשר לבחו�  קטע השתזרות ההקטע כולל רמפה כניסה ושתי רמפות יציאה מקטע הדר� ומהוו
הנתוני� נאספו באמצעות תצלו� אוויר של . נהיגהתנהגות העל האת ההשפעות של תכנו� המסלול 

כוללי� מידע על  הנתוני� המעובדי� . בשנייהתאחתמונה הקטע במש� שעה ברזולוציה של 
הנתוני� מייצגי� תחו� רחב של מצבי .  מימדי� של כל רכב בקטע בכל שנייההנתיב וה, מיקו�ה

 14.2טווח הצפיפות הינו בי� . שנייה/ מ25-שנייה ל/ מ0.40טווח המהירויות הינו בי� . תעבורה
  .D-E הרמת השרות בקטע הינ. נתיב/מ"ק/ רכב55.0-נתיב ל/מ"ק/רכב

חלוקת המקד�  (tבדיקת יכולת ההסבר של כל אחד מהמשתני� בוצעה בעזרת הסטטיסטי 
 בגודלו ובכיוונו של �נבדק ההיגיו, כמו כ�. �חושב לכל אחד מהאשר ) שנאמד בסטיית התק� שלו

תוצאות האמידה של המודל של החלפת נתיב  .ער� האומד של המשתנה בפונקצית התועלת
  :  שוני� כמפורטמושפעת ממשתני�להחלפת נתיבי� החלטת הנהג מראות כי 
כגו� מרחק של הנתיב הנוכחי עד לנתיב , את תכונות הנתיבי�מבטאי� משתני� ה •

 ;  דות של הנתיב עצמומיוחהתכונות  וההמיועד להחלפה

מהירות של הכגו� , השוני�את מאפייני התעבורה בנתיבי� מבטאי� משתני� ה •
 ;המקדי�הרכב 

כגו� הא� הנהג חייב לצאת ביציאה הקרובה , את תכנו� המסלולמבטאי� משתני� ה •
 ;משי� בדרכו ליעדעל מנת לה

 ; את תכונות הנהג כגו� תוקפנותמבטאי�משתני� ה •
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כגו� הנתיב שהנהג בחר כנתיב , ת התלות במצב הקוד�אמבטאי� משתני� ה •
 .להחלפה בתקופת הזמ� הקודמת

 את התלות הקיימת בי� ההחלטות שהנהג תופסההמשתנה האחרו� שברשימה הינו המשתנה 
 הינו חיובי וכיוו� ער� האומד שלהתוצאות מראות שהמשתנה הינו מובהק ו. מקבל במהל� הזמ�

 הסתברות כ� גדלה המתוהנהג בחר בנתיב מסוי� בתקופת זמ� קודבמידה , כלומר. בהתא� לצפוי
  . את ההתמדה הקיימת בהתנהגות הנהגבטאל המשתנה מצליח .לבחור באותו נתיב בזמ� הנוכחי

 �) קבלת הפערי�(תוצאות האמידה של המודל ג� מראות כי ההחלטות לבצע החלפת הנתיבי
 � בנתיב הסמו� בכיוו� הנתיב אותוהסובבי� מושפעי� מהמהירות היחסית של הרכב עצמו לרכבי

     .המיועד להחלפה
יש לחקור את ההשפעה של החלפת נתיב על זרימת על מנת להגביר את כושר המודל המוצע 

צור� במחקרי� קיי� , כמו כ� .סימולציה תנועתית-על ידי הטמעת המודל במיקרו, התנועה
�  .  ממקומות אחרי� בעול�נוספי� בכדי לזהות השפעות ע� בסיסי נתוני� שוני
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