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Abstract

The purpose of this research is to enhance existing lane changing models to
incorporate and capture the persistence of the driver’s behavior, through modeling of
the underlying lane selection process. Persistent behavior is assumed and accepted for
strategic travel choices (e.g. destination, path and schedule). Based on this, we can also
assume that drivers may persist in trying to complete driving goals such as lane
changing. Thus, the decisions drivers make over time are not independent, but are
related by a logical and stable relation.

Hidden Markov Models (HMMs) are appropriate for taking into account the
transitions between phases and find their use in categorizing sequences of data. HMMs
are based on two hypotheses: there exists a latent selection process which evolves from
state to state (in our case, the selection of the target lane) and that the study of an
observable ocutput (i.e. the observed lane changing action) could provide information on
this process. The observable state depends on the previous choices, which are the
underlying hidden states. For example, we observe that a driver stays in his current
lane, but we can not observe the real reason that caused him to stay there. The driver
may have chosen not to pursue a lane change and to stay in his current lane or he may
have chosen to move to another lane but could not complete the lane change. In
summary, we can assume that the lane changing decision process is latent and only the
driver’s actions (lane changes) are observed.

A framework for modeling the lane changing behavior taking into account the state
dependence between observations of a given driver over time, which utilizes the above
mentioned concepts, is developed. Statistical tests show that the State Dependence
Model does better fit the data compared to previous models and therefore should be
selected for prediction.
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Abstract

The purpose of this research is to enhance exiding changing models to
incorporate and capture the persistence of theedsi\behavior, through modeling of
the underlying lane selection process. Persistehavor is assumed and accepted for
strategic travel choices (e.g. destination, pathsaihnedule). Based on this, we can also
assume that drivers may persist in trying to cotepldriving goals such as lane
changing. Thus, the decisions drivers make ovee tare not independent, but are
related by a logical and stable relation.

Hidden Markov Models (HMMs) are appropriate for itek into account the
transitions between phases and find their usetegoaizing sequences of data. HMMs
are based on two hypotheses: there exists a k¢dadtion process which evolves from
state to state (in our case, the selection of déinget lane) and that the study of an
observable output (i.e. the observed lane charggtign) could provide information on
this process. The observable state depends onréwops choices, which are the
underlying hidden states. For example, we obsdmae & driver stays in his current
lane, but we can not observe the real reason thated him to stay there. The driver
may have chosen not to pursue a lane change astdyton his current lane or he may
have chosen to move to another lane but could ootptete the lane change. In
summary, we can assume that the lane changingia@teg@socess is latent and only the
driver’s actions (lane changes) are observed.

A framework for modeling the lane changing behavaking into account the state
dependence between observations of a given drixartane, which utilizes the above
mentioned concepts, is developed. Statistical tektav that the State Dependence
Model does better fit the data compared to previmoslels and therefore should be
selected for prediction.



Chapter 1
Introduction

1.1 Motivation

Overloaded freeways and congested main roads atl e world reflect the fact
that the existing road networks are not able toecaiih the increasing demand for
mobility. Traffic Congestion has been one of thejanachallenges facing road
authorities around the world and it continues towgnot only in urban areas, but also
in suburban and rural areas. Israel is no exceplicaffic Congestion has a significant
adverse economic impact through deterioration obihty, safety and air quality.
Development of the road network has in many cas@sost exhausted the available
land. Moreover, in many areas, environmental camgs limit construction of new
roads or expansion of existing ones. Thus, on tiehand, it is socially untenable to
expand the existing infrastructure further in ortterelax the situation; and on the other
hand, mobility is vital for the economic developrmen

As a result, the importance of better managemetiteofoad network to efficiently
utilize existing capacity is increasing. In receygars, a large array of traffic
management schemes have been proposed and impéein&@he main idea of traffic
management is to efficiently utilize roads andfita$ystems that are already built to
minimize congestion and maximize safety. Methodsagorithms proposed for traffic
management need to be calibrated and tested. Ihagasss, only limited, if any, field
tests are feasible because of prohibitively hight€@nd lack of public acceptance.
Furthermore, the usefulness of such field studedeterred by the inability to fully
control the conditions under which they are conddcHence, tools to perform such

evaluations in a laboratory environment are needed.



Intelligent Transportation Systems (ITS) applicasip such as dynamic traffic
control and route guidance, have emerged as effi¢@ols for traffic management.
These applications involve information disseminatimm a traffic management center
to drivers and deployment of management and corgh@tegies. The impact of
information and control strategies on traffic flosan be realistically modeled only
through the response of individual drivers to tiferimation.

Microscopic traffic simulators are becoming inciegl/ popular as evaluation and
planning tools for transportation improvement atittes and particularly valuable in
the context of dynamic traffic management systerhgy are used to test and evaluate
infrastructure design and operation and contracped in a virtual environment. These
tools can evaluate complex traffic systems whiadwoiporate various components (i.e.,
traffic signals, ramp metering, incidents and tlaweinformation) operating
simultaneously. They offer cost savings and fldiibicompared to testing or
implementation in the real world. The advantagesn@roscopic traffic simulation
tools have motivated researchers to study drivetgpliors for accurate modeling.

Modern traffic simulation tools are a synthesisaafiumber of interacting models.
These models belong to two categories: models ¢bpture traffic dynamics and
models that capture travel behavior (i.e., routeiah and response to travelers'
information). Traffic dynamics are captured by dethdriving behavior models.

Driving behavior models describe drivers’ decisiavith respect to their vehicle
movement under different traffic conditions. Thesedels include speed/acceleration
models, which describe the movement of the vehickhe longitudinal direction, and
lane changing models, which describe drivers' laakection and gap acceptance
behaviors. Thus, the lane changing model is iniqdar an important component of
microscopic traffic simulation tools.

Lane changing models consist of lane selection tepaehich concern drivers'
desire in changing lanes, and gap acceptance mosdeish concern the decision to
execute the lane-change. Modeling the lane chardgagsion process is very complex
due to its latent nature and the potentially langenber of factors a driver considers
before making a decision. The only observable phthis process is a successful lane
change action. The exact time at which a drivend#scto change lanes cannot be

observed. Most current models assume that driveakenrepeated instantaneous



decisions. At each point in time the driver assesbe situation and selects the
immediate action independent of previous decisiblwsvever, in reality, the decisions
drivers make over time are not independent. Thiskwall develop a framework and

estimate models for lane changing behavior taking account dependencies in the

lane changing decisions drivers make over time.

1.2 Problem Description

Driving is a hierarchical task with three interacgtilevels. Any action the driver
completes, such as a lane change, requires ther doiwindertake the following tasks:

e Navigation or planning (Strategic): Route choicel &mp schedule decisions
drivers make pre-trip and en-route.

e Guidance (Tactical): Determination of the two disienal movement of the
vehicle in traffic.

e Control (Operational): Continuous activities thavdr performs to control
and direct the vehicle (e.g. steering, throttle braking).

The driver makes strategic decisions: choosestagrat determines a schedule for
the trip (e.g. in terms of desired arrival timepclical decisions are affected by the
vehicle’s driving neighborhood and by the stratexgiosiderations: the driver has to be
in the correct lanes in order to follow the pathrplthe trip schedule affects desired
speeds. If the trip schedule is not kept or in pnesence of traffic information the
driver may decide to re-evaluate the path plansmitch paths. The choices of speed
and lane are translated to mechanical actionsrtbvadhe vehicle.

Existing driving behavior models have several i@t limitations. Among them
is that in many cases they do not adequately caphdr sophistication of drivers: they
do not capture the interdependencies among thesidesimade by the same drivers
over time; and represent instantaneous decisionagakhich fails to capture drivers'
planning and anticipation capabilities.

Persistent behavior is assumed and accepted fategit travel choices (e.g.
destination, path and schedule). Based on this,atso realistic to assume that drivers



may persist in trying to complete tactical goalstsas lane changing, as well. Thus, the
decisions drivers make over time are not independen are related by a logical and
stable relation.

Hidden Markov Models — HMMs — (Rabiner, 1986) appr@priate for taking into
account the transitions between phases and find @ise in modeling sequences of
data. HMMs are based on two hypotheses: theresexitgtent selection process which
evolves from state to state and that the studyadleservable output that is affected by
this process could provide information on this @ The observable state is the
consequence of the previous decisions, which areniderlying hidden states.

This thesis explores the integration of HMM struesiwithin lane changing models
in order to introduce persistent behavior into ¢h@sodels. A model that captures
drivers' lane changing behavior under the assumptiostability and persistence is
developed in this thesis.

1.3 Thesis Outline

This thesis consists of six chapters. In Chapter IRerature review of existing lane
changing models and Hidden Markov Models is presenChapter 3 presents the
framework and structure of the proposed lane clmangnodel. In chapter 4, the
available data for estimation of this model is didsxl. Estimation results are presented
in Chapter 5. Finally, conclusions and directioosftirther research are summarized in
Chapter 6.



Chapter 2

Literature Review

This chapter reviews literature on two subjectsid.&hanging Models and Hidden
Markov Models. The next section summarizes somthefrelevant literature on lane

changing models and their limitations.

2.1 Lane Changing Models

Lane changing is usually modeled in two steps: dbeision to consider a lane
change — lane selection process, and the decisicexeécute the lane change — gap
acceptance model. Lane changing behavior has esteconsiderable attention,
particularly as part of the development of micrgscadraffic simulation models in

recent years.

2.1.1 Background

Lane changing behavior has a significant effecttraffic flow. A great deal of
research has been conducted in the last two detadievelop mathematical models to
simulate the lateral movements of a vehicle in rafte road facilities.

In most lane changing models it is assumed thaedsi behavior is governed by
two basic considerations: achieving a desired s@a®dbeing in the correct lane to
undertake an intended turning maneuver. Thus, daa@ges can be broadly classified
as either mandatory or discretionary. Drivers utaler mandatory lane changes (MLC)
when they must leave their current lane due to laloekages or some other traffic
restrictions. They perform discretionary lane clem@DLC) when they perceive that

they can improve their driving conditions by movittganother lane, although it is not



necessary to do so. Drivers may have differentldegé acceptable risks under these
two conditions. The execution of lane changes ideterd using gap acceptance
models.

Gipps (1986) introduced the first lane changing etothtended for micro-
simulation tools. The necessity, desirability aatesy of lane changes were considered
in the model. The model is essentially a strucoar@necting the decisions drivers make
before changing lanes. Their behavior falls inte ohthree patterns, depending on the
distance to the intended turn. While the turn mote it has no effect on lane changing
decisions and the driver concentrates on maintgithe desired speed. When the
intended turn is in the middle distance zone, tineed ignores opportunities to improve
speed that involve changing lanes in the wrongctle. The driver also tends to move
to and remain in the lanes most appropriate fotuns. Finally, in the zone close to the
turn, the driver is interested solely in reachirdge tcorrect lane and speed is
unimportant. When more than one lane is acceptabée conflict is resolved
deterministically by a priority system considerimg,order of importance, locations of
obstructions, presence of heavy vehicles and patepeed gain.

This framework was implemented in different micgic traffic simulation
models. One example is CORSIM (Halati et al. 199RAWA 1998). In Corsim, the
motivation to perform DLC is quantified in terms thfe subject vehicle’s speed and
headway with respect to the vehicle in front. Akrigctor is computed for each
potential lane change. The risk is calculated er gubject with respect to its intended
leader and for the intended follower with respextthie subject. The risk factor is
calculated in terms of the deceleration a drivestmapply if its leader is to break to a
stop, and subsequently compared to a threshole vaihich is determined by the type
of lane change and its urgency.

This framework was also implemented in MITSIM (Yagd Koutsopoulos, 1996),
which uses a probabilistic approach to model comfig goals in selecting lanes. Lane
changes are again classified as MLC or DLC. MLC rapsleled with an assumption
that the driver has four goals in performing MLG:nbove to the next destination on his
travel path, to bypass a lane blockage, to aveekaicted-use lane and to comply with
signs. If there are conflicting goals, they areohesd probabilistically based on utility

theory. DLC, are modeled with the assumption that grimary goal of the driver in



changing lanes is to achieve desired speed. Ardpedorms lane changing only when
both the lead and lag gaps in the target lane@repsable.

Hidas and Behbahanizadeh (1998) implemented aasimilodel in the micro-
simulator SITRAS. The two distinct features thatkendéheir model unique are a new
definition of goals for DLC and the introduction @foperative lane changing in MLC.
In addition to the speed advantage in DLC, sintda¥ang and Koutsopoulus' model, a
gueue advantage was added as a motivation for DL.Gther words, if the adjacent
lane provides a faster speed or a shorter quedeiver has a motivation to change
lanes. The second additional feature of this maslghat the model accounts for
cooperativeness when determining mandatory lanegesa In heavily congested traffic
conditions, MLC may occur through cooperation witie intended follower. The
willingness of the follower to allow the subjecthiele to change lanes is a function of
his aggressiveness. A cooperative follower wilktstallowing the subject vehicle and
the subject will start following the intended lead® the target lane. As a result of this
cooperation, the subject vehicle is now able tangkhdanes into the gap opened up in
the target lane.

The distinction between MLC and DLC in the abovedeis is artificial and
prohibits capturing trade-offs between mandatoxy discretionary considerations. The
parameter values used with these models are usuedsd on the modelers’ judgment.
Frameworks for rigor estimation of the model parteree were not proposed.
Inconsistencies in the behavior of a driver overetiand variability between drivers are
ignored. The different zones are defined deterimaaby. Moreover, normally it is
assumed that the decision process is repeatedeay &me step and the decisions
drivers make over time are independent.

Ahmed et al. (1996) and Ahmed (1999) developedne-thanging model that
captures both MLC and DLC situations. Ahmed (199®posed a framework to
jointly estimate parameters of the lane selectimh@ap acceptance components of lane
changing models. The structure of the model is shiowFigure 2.1. The lane changing
process is modeled with three steps: a decisicaotsider a lane change, choice of a
target lane and acceptance of gaps in the target & discrete choice framework is
used to model these decisions. Logit models ard tseapture the various choices.

When a MLC situation applies, the decision whetirenot to respond to it depends on



the time delay since the MLC situation arose. DE€ansidered when MLC conditions
do not apply or the driver chooses not to respondhé¢m. A two-step decision process
is assumed: First, drivers examine their satigfactvith driving conditions in the
current lane, which is affected by the differenegween the subject speed and its
desired speed. The model also captures differeincdse behavior of heavy vehicles
and the effect of the presence of a tailgating alehif the driver is not satisfied with
driving conditions in the current lane, he comparesditions in neighboring lanes to
those in the current lane in order to choose ttgetdane. Lane utilities are affected by
the speeds of the lead and lag vehicles in thews leelative to the current and desired
speed of the subject vehicle. A gap acceptance hwa@dso included within the lane

changing framework.

Unsatisfactory Satisfactory
driving drivng
conditions conditions

Other Current
lanes lane
Right Right
lane lane
Accept Reject Accept Reject Accept Reject Accept Reject
gap gap gap gap gap gap gap gap

Left Current Right Current Left Current Right Current Current Current
lane lane lane lane lane lane lane lane lane lane

y A

Figure 2.1 - Structure of the lane changing modeppsed by Ahmed (1999)

It is difficult to estimate models for the choice teact to an MLC situation (the
upper level decision in Figure 2.1) which is unalied. Therefore the discretionary
and mandatory lane change models were estimatedately, for special cases, where
the nature of the lane changes is obvious. Theudsd for estimation was collected on



200 meters section of Interstate 93 at the CeAmtairy, located in downtown Boston.
Ahmed (1999) estimated the MLC model using dataHerspecial case of drivers that
merge to the freeway from an on-ramp, under theamagton that all vehicles are in
MLC state.

Wei et al. (2000) developed a set of determiniktiee selection rules for drivers
that turn into two-lane urban arterials and theibsequent lane changing behavior
based on observations made in Kansas City, Missbbe model captured the effect of
the driver's path plan on the lane choice. Lanectsieh is determined by the location
and direction of intended downstream turns. Drividnat intend to turn at the next
intersection choose the correct lane. Drivers thend to turn further downstream
choose the correct lane if it is the closest toside they are entering the arterial from.
If the correct lane is the farthest, the lane ohagcbased on the aggressiveness of the
driver. Driver's lane change behavior in the aateis influenced by a similar set of
rules. It was observed that passing is an impotiehavior that needs to be modeled.
Vehicles already in the correct lane may undertagpassing maneuver in order to gain
speed. The model requires that both the adjaceningde other lane and the gap in the
current lane between the subject and its leadacbeptable for passing to take place.

Toledo et al. (2003) developed an integrated ldmie-snodel that allows joint
evaluation of mandatory and discretionary constitema and captures trade-offs
between these considerations. He proposed a lamgicly model based on the tactical
choice of the target lane, stating that a drivey meed to perform a sequence of actions
in order to complete a desired lane change. Theengas to the MLC situation is more
realistically represented as a continuously indngadunction rather than a step
function. The model consists of two levels: choidea lane shift and gap acceptance
decisions. The structure of the model is showniguie 2.2.

The first step in the decision process, lane sisiflatent since the target lane choice
iS unobservable and only the driver's lane-changaotons are observed. Latent
choices are shown as ovals and observed onespeseated as rectangles. The driver
has, at any particular instance, the option ofctmlg to stay in the current lane or
opting to move to an adjacent lane. The Currenhdiracorresponds to a situation in
which the driver decides not to pursue a lane chahgthe Right and Left branches,

the driver perceives that moving to these lanespeetively, would improve his

10



condition in terms of speed and path plan. In themges, the driver evaluates the
adjacent gap in the target lane and decides whé#tkdane-change can be executed or
not. The lane change is executed (change Righthange Left) only if the driver
perceives that the gap is acceptable, otherwisadtiver does not execute the lane-
change (no change). This decision process is repeatevery time step.

Target
Lane

Gap No Change No Change No
acceptance Change Left Change Right Change

Figure 2.2 - Structure of the lane changing modeppsed by Toledo et al. (2003)

Explanatory variables in this model include neigtiomd variables, path plan
variables, network knowledge and experience, andndrstyle and capabilities. Since
information about the driver's style and charastes is not available, individual
specific error terms are introduced to capture amkninformation. The parameters of
the model were estimated jointly using second bgoseé trajectory collected in a
section of I-395 Southbound in Arlington, VA.

Choudhury (2005) developed a lane changing mo@eIddptures the lane-changing
behavior in presence of exclusive lanes. Thaths, drivers’ preference to specific
lanes, such as in the case when travel lanes as&lngalanes are defined, can be
captured in the model. The direction for an immediane change is based on an
explicit choice of a target lane rather than myogwaluation of adjacent lanes as in
previous models. The model was estimated usingxama likelihood estimator.

The model consists of two levels of decision makthg target lane choice and the
gap acceptance. The structure of the model is showigure 2.3.

11



Target
Lane

Immediate
Lane

Accept Reject Reject Accept Reject Accept
Gap Gap Gap Gap Gap Gap

Change No No No Change No Change
Right Change Change Change Left Change Left

Gap
Acceptance

Figure 2.3 - Structure of the lane-changing modebffour-lane road with the subject

vehicle in Lane 2 proposed by Choudhury (2005)

The decision structure shown on the top is for hicle that is currently in the
second lane to the right (Lane 2) in a four-laredrdl herefore, Lane 3 and Lane 4 are
on its left, and Lane 1 is on its right. At the lnggt level, the driver chooses the target
lane. In contrast with existing models the choieeconstitutes of all available lanes in
the road (Lane 1, Lane 2, Lane 3 and Lane 4 ingk&nple). The driver chooses the
lane with the highest utility as the target larfethle target lane is the same as the
current lane (Lane 2 in this case), no lane chasgequired (No Change). Otherwise,
the direction of change is to the right (Right Laifiehe target lane is Lane 1, and to the
left (Left Lane) if the target lane is either LaBeor Lane 4. If the target lane choice
dictates a lane change, the driver evaluates tpe igathe adjacent lane corresponding
to the direction of change and either accepts thalable gap and moves to the
adjacent lane (Change Right or Change Left) orctgjthe available gap and stays in
the current lane (No Change).

Explanatory variables affecting the target lanétigis of a driver are lane attributes,
surrounding vehicle attributes and path plan. Iméion about the driver's style and
characteristics is however not available and istwagd by introducing individual

specific error terms.
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Table 2.1 - Estimation results of the target lameleh proposed by Choudhury, 2005.

Variable Parameter value t-statistic

Target Lane Model

Lane 1 constant -1.696 -3.03
Lane 2 constant -0.571 -1.68
Lane 3 constant 0.059 1.16
Lane density, vehicle/km -0.013 -1.21
Average speed in lane. m/sec 0.176 1.59
Front vehicle spacing, m 0.024 3.86
Relative front vehicle speed, m/sec 0.115 1.46
Tailgate dummy -4.935 -1.96
CL dummy 2.686 1.55
1 lane change from the CL -0.845 -1.15
Each additional lane change from the CL -3.338 -1.91
Path plan impact, 1 lane change required  _2 549 -4.57
Path plan impact, 2 lane changes requited _4 953 -2.19
Path plan impact, 3 lane changes required _g 955 -1.65
Next exit dummy, lane change(s) required _g g72 -1.35
BvLc -0.417 -2.48
m 0.001 0.68
T2 0.086 1.38
lanel
o -1.412 -2.29
[ane2
ol -1.072 -0.50
[ane3
ol -0.071 -3.61
laned
ol -0.089 -1.56
Lead critical gap
Constant 1.541 5.59
Max (ASy°%%0) , m/sec -6.210 -3.6
Min (AS,(¢2%0) , m/sec -0.130 -2.09
o % -0.008 -3.17
lead
© 0.854 1.29
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Lag critical gap

Variable Parameter value t-statistic
Constant 1.426 5.35
Max (ASy2%,0) , m/sec 0.640 3.36
o™ -0.205 -0.48
9 0.954 4.80
L(0) = -1434.76
L(B) = -875.81

The parameters of the model were estimated joinHing second by second
trajectory data collected in a section of 1-395 thbound in Arlington, VA, used also
by Toledo et al. (2005). The estimation resultsheftarget lane model are summarized
in Table 2.1.

An important limitation of existing models is thdtivers are still assumed to make
decisions about lane changes at discrete pointmie, tindependently of the decisions
made earlier. In general, lane changes are modedediscrete events occurring at
specific points in time. Current models assume thatdecision process is repeated at
every time step. However, drivers may, for exampérsist in trying to complete a lane
change; it means; drivers may have the charaatsristf persistence in trying to
complete their lane changing. This behavior is cegtured in the models described
above. One of the ways to fill this gap in the 8xg models is applying the theory of
the Markov chains.

The next section introduces the concept of Hiddearkgv Models (HMM) and
explains how they can be used to taking into accthentransitions between phases.

2.2 Hidden Markov Models (HMMs)

In many areas it is often the case that we araested in finding patterns in
sequences of events that appear over time. Therpracesses that consist of a finite
number of states. They start in one of these statésnove successively from one state
to another. Each move is called a step. At eachtpnitime the system may have
changed states from the state the system was imtiment before, or it may have
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stayed in the same state. If the chain is currentgtatel, then it moves to stajeat the
next step with some known probabilitieg. The probabilitiesp;, called transition
probabilities, do not depend upon which statesti@n was in before the current state.
Thus, every future state is conditionally indepenidaf every prior state (except the
current one). The above process is called Markoeess.

However, in some cases the patterns that we wisliintb are not described
sufficiently by a Markov process. For example, thees where the state is not directly
visible, but variables influenced by the state wsgble. In such cases the observed
sequence of states is probabilistically relatedh hidden process. We model such
processes using a HMM where there is an underlgidden Markov process changing
over time, and a set of observable states whichreleded somehow to the hidden
states. HMMs are based on two hypotheses: thestsexiatent selection process which
evolves from state to state and that the studyadleservable output that is affected by
this process could provide information on this @ssc The observable state is the
consequence of the previous decisions, which ageutiderlying hidden states. It is
important to note that the number of states inhigelen process and the number of
observable states may be different. In a HMM, tistohy of states the model took
cannot generally be determined from the data seguerhe relationship between the
state of the latent process and the observablasodetermined by a density function
attached in each state of the process.

In the case of lane changing, we can say thataihe $election is a latent process
which evolves from state to state and generatesqaesce of hidden states. This
evolution is based on two processes. The first ggecevolving state by state, is
invisible - unobservable state (for example, theedrwants to stay in his current lane,
to exit, etc). The second is the observable sfateefkample the driver changes lane,
stays in his current lane, etc). So, we are intedes finding a model for generating a
data sequence. As it is explained in this sectitiMs are appropriate for taking into
account the transitions between phases and find @ise in modeling sequences of

data.
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A HMM is a triple (IT, A,B) , where:

IT=(r;); Vector of the initial state probabilities; comtaithe probability of the

hidden model being in a particular hidden statbeteginning of the process.

A=(g;); State transition matrixPr(x_|x; ); holding the probability of a hidden

state given the previous hidden state.

B =(b;); Confusion matrix; Pr(y, |x; ); containing the probability of observing a

particular observable state given that the hiddedehis in a particular hidden state.

Each probability in the state transition matrix andhe confusion matrix is time
independent - that is, the matrices do not changgme as the system evolves. In
practice, this is one of the most unrealistic agstions of Markov models about real
processes.

For example, Figure 2.4 represents a 3-state HMMeravleach hidden state

(x) conducts to one of 4 observable states/actiony with some probability(b, ) .
The state transition probabilitiel; ) are the probabilities of moving from one hidden

state to another one.

Figure 2.4 - A 3-state HMM, with 4 observable staesons (Source: Wikipedia).
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Once a system can be described as a HMM, the probfegenerating a HMM
given a sequence of observations can be solveather words, the model parameters
most likely to have generated a sequence of obsengacan be determined.

2.2.1 Earlier Utilization of HMMs in the Transport Field

HMM are extensively used in the field of speech geution. A few applications
have also been proposed in transportation sciembere most of them have been
applied in the field of driving assistance systeamnd behavior recognition. Overall, the
application of the HMM to lane changing models tsaa early stage and rather
incomplete and limited.

Pentland and Liu (1999) proposed a framework thptucas the driver’s intended
action, for instance if the driver is about to l&adr turn. They applied HMMs to
identify drivers’ current internal (intentional) asé and to predict the most likely
subsequent sequence of internal states. The modefieahs are events like stopping at
the next intersection, turning left at the nextemsection, turning right at the next
intersection, changing lanes, passing the carantfror doing nothing. Their model
considers several hidden internal mental statésatieathe individual steps that make up
the action, each with its own interstate transifiwobabilities. The observed variables
are the changes in heading and acceleration otaheThe model assumes that the
driving actions can be broken down into a long ch&irsimpler sub-actions. A lane
change, for instance, may consist of the followstgps, where each sequence was
modeled by a HMM: (1) a preparatory centering theircahe current lane, (2) looking
around to make sure the adjacent lane is clearstégring to initiate the lane change,
(4) the change itself, (5) steering to terminate tane change, and (6) a final
recentering of the car in the new lane. The modatissically characterizes the
sequence of steps within each action and then ubmdirst few preparatory steps to
identify which action is being initiated. In ordir recognize which action is occurring
given the observed pattern of heading and accelarate observed pattern of driver
behavior is compared to the HMM of each action. @haé used in this work was
collected with a driving simulator. The model act®d 95% recognition accuracy

approximately 1.5 sec. after the initiation of thaneuver.
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Another application of HMMs was carried out by Kuge at (2000). They
proposed a method to predict drivers' lane chamigamtions by using steering behavior
data. They characterized three different maneutleats were considered the hidden
states in the HMM: emergency lane change (LCE)mabrdane change (LCN), and
lane keeping (LKN). The steering angle, steeringleanglocity, and steering force
were the observable states, within each one theyid=mresl several sub-HMM.
Recognition by the HMM involved calculating the pabldity that the given
observation data sequence would be generated bgfahe three models. The forward-
backward algorithm was used in order to computte gpeobabilities and identify the
most likely hidden state. The system simulatestaot@ossible driver intentions and
their resulting behaviors using a lane changing eho@he system compares the
model's simulated behavior with a driver's actuslsesved behavior and thus
continually infers the driver's unobservable intem$é from the observable actions. The
data used with this model was collected with aidgwsimulator. The system achieved
98% accuracy on detection of LCE within 0.5 seterahe initiation of the maneuver,
but did not report an analogous accuracy for LONng problems with distinguishing
between normal lane change and lane keeping datespoi

Dapzol (2005) proposed a model that predicts dinegravior using an HMM. The
model was used to identify the driver's aim and dhging situation he is in. The
driving situation was divided into phases, which stdate the hidden states. A base
driving situation model using HMM was built. Thidloaved defining for a given
sequence of data to which situation it may belongedperiment was conducted in real
driving where 718 driving sequences were collectadt, only 36 different driving
situations were classified. For each sequence, theerd actions, vehicle
characteristics, and environment classification weo®rded. In order to categorize the
driver's current situation, the system compareata temporal series with a library of
driving situation models and selects the most aaequrhe model allowed them to
categorize driving sequences offline with 90% sasaste (using all the data of each
sequence), and online with 85% success rate (@ihguhe data of the first second of
each sequence).

Zou and Levinson (2006) implemented HMMs to model timobservable driver

attitudes and to achieve the classification ofdhger actions in different situations at

18



intersections. In this application, the hiddenestadre the attitudes of drivers towards
traffic conditions; the observable states are @efiny a combination of the acceleration
rate of the vehicle and whether or not it is in aftct with other vehicles. Thus, the
observable vehicle state set includes 6 states wdmehgenerated by {Acceleration,
Cruising, Deceleration} x {Conflict, Not Conflict}. AtHMM might represent a set of
states in real world, therefore a state is recognmecomputing the probability that an
HMM generates the observed states. The Baum-Weltma®on algorithm was
applied to estimate these probabilities. They fouhdt three clusters (states) are
sufficient to represent distinct driving attitudes the sample set. However, these states
are behaviors without any “meaning” and in ordeatave to a real understanding of
behavior, it is vital to obtain the meanings of theasured behaviors. The authors used

observed vehicle movement data to estimate the imode

2.3 Discussion

The current emphasis in driving behavior modeliagin development of more
realistic models to help improve the fidelity of aroscopic traffic simulation. This
could be achieved by increasing the level of datailhe specification of models to
better capture the complexity and sophisticatiohuwwhan decision-making process.

The various lane changing models mentioned in iis¢ part of this chapter are
increasingly sophisticated and complex. However, gtdlyassume that drivers make
instantaneous decisions about lane changes. Atpaoh in time, the driver assesses
the situation and selects the immediate actionepeddently of the decisions made
earlier. However, in reality drivers may be persistentrying to complete a lane
change. This behavior is not captured by these eode

It was also shown that driver behavior modeling aewbgnition of different types
of lane changes is possible using HMMs. However, fmication of the HMM to the
lane changing models is at an early stage.

Most of the applications of the HMM structure fomdachanging, focused in
identifying the intention of the driver using obsed behavior (i.e. acceleration,
steering angle). These models could detect whetheotothe driver is changing lanes
at the time of the observation but did not explahy the lane changing is undertaking
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and so cannot predict lane changes ahead of tilmerefore, these models cannot be
used in traffic simulation.

As it was also shown, most of the existing models &pgied HMM, did not use
real data to estimate them, but used data obtdined driving simulators. The results
on dynamic simulator shows the capacity of this apph to cope with the variability
of behavior, but caution must be taken in trangigrthem to real world driving. It is
possible, for instance, that there are drivingestylot seen in any of their subjects. The
data used from a driving simulator is also purantthose obtained under real driving
conditions. Most of the models also used a restliciumber of situations. Introduction
of new situations will decrease the recognition.réteere has been no effort to develop
a model where a wide range of situations in a reahteof lane changing are captured.

We can conclude that there are limited works whenesigience and stability
behavior is captured in the driver's behavior. €hesrks also do not span the entire
range of real driving situations. The purpose @ thsearch is to enhance existing lane
changing models to incorporate this behavior, usimgHMMSs formalism and in this
way, be able to understand the conditions that ocdeduo the driver to execute a lane

change.
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Chapter 3

Model Structure

In this chapter the framework and structure of theppsed lane changing model
are presented. The methodology presented in thdystelies on the hypothesis that
drivers are persistent in their behavior. A conpleine changing model that explicitly
takes into account correlations and dependencidgitane changing decisions drivers
make over time is presented. The model is basegr@rious works of lane changing
models. The contribution of the proposed modelhe éxplicit addition of the state
dependence concept and the treatment of the intiaditions problem it brings about.
The presentation is organized as follows: firsg ttoncepts of state dependence are
introduced. Then, these concepts are utilized teldp the structure of the proposed
lane changing model, which takes drivers' persigtemto account. Finally, the
likelihood function for the joint estimation of tHane-selection and gap-acceptance

components of the model is formulated.

3.1 Theoretical Framework - Integration of the HMM

A lane change decision process is assumed to avsteps: the target lane choice
and acceptance of a gap in the direction of thgetdane. Modeling such a process is
extremely complicated. The lane change decisiocga® is latent in nature; the target
lane is unobservable. All that is observed is thecation of the lane change (change
left, change right or no change).

We can assume that lane changing is based on thatiem of two processes; the
first one is the invisible underlying driving go&br example the driver wants to stay in
his current lane or change to another lane. Thilsldn process determines another

visible process which explains the available obg@nra - the lane a vehicle is in.
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An important limitation of existing driving behavienodels, discussed in Chapter
2, is that in most cases models assume that drimak® instantaneous decisions. At
each point in time the driver assesses the sitwatml selects the immediate action. In
reality, human drivers may conceive and perfornoagblans over a length of time and
be consistent in trying to complete these plans.

In the next sections, possible general modelingcafres that allow capturing state
dependency will be discussed. Then their applicafio our particular case of study of

lane changing will be presented. The observed rE@oe named, and the latent states

are named .

3.1.1 Static Model

An alternative approach, as was presented by Toledb €003) assumes that all
state dependencies are captured by the explanatoigbles. In other words, the state
dependency is only indirectly considered. This apph is based on the concept of a
partial short-term plan. The assumption is thatditiger executes one step of the short-
term plan, re-evaluates the situation and decigeséxt action to take.

Under the partial short-term planning assumptions, jtint probability of a latent
state and the observed actions, at time t, is gyen

p(a.s1X)=p(als.X)p(s]X) (3.1

Where, o,are the observed actions (the alternativesk {1,..1} and sare the

latent statess €{0,1,..t}. X are explanatory variables.

The marginal probability of an observation is giv®n

p(o 1X)=> p(a.s |X) (3.2)

The joint probability of the entire sequence ofervations is given by:
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.
p(OIX)=]]p(o|X) (3.3)
t=1

Where, T is the number of observed time periods.

3.1.2 Full State Dependency
Another possible modeling approach, proposed bgdmkt al. (2003), would be to

define latent states as combinations of a shomt-tgoal and a short-term plan and
capture the dynamics of the behavior by modelirgtestdependencies. The joint

probability of a latent states() and observed actior(, i.e. lane changing) of a given

vehicle at time t, conditional on the sequenceref/jous states is given by:
P(0.51S4.X)=p(al5.5:.X)p(s15.4.X) (3.4)

Where, § is the sequence of states up to timeSt={s;i =0,1,..t}. o are the

observed actions (alternatives), {1,..1}. 5§ are the latent states, €{0,1,..t}. X are

explanatory variables.
The probability of the entire sequence of statgg &nd observationsd|) is given

by:
P(Or.S 8. X) =[] p(0.515.1.X) (3.5)

Where, T is the number of observed time periods.
Finally, the joint marginal probability of obseri@ts is calculated by summation

over all possible state sequences:

P(Or 1, X)= 2 P(O S s,X) (3.6)

State
sequences
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3.1.3 One Step State Dependency

In this section, we propose an intermediate approtc capturing the state
dependency. In this approach, the assumption oévbdution of two processes is still
relevant. The observable state is the consequenite revious decisions, which are
the underlying hidden states. The particularityhug approach is that every future state
does not depend upon which states the chain wdsefore the current state. It is
assumed that future state transitions and actiepgrdl only on the current state and
are independent of all previous states.

Under the above assumptions, the joint probabiifya latent state ), the

previous latent states(,) and the observed actions, | of a given vehicle at time t is

given by:
P(0,,s.8,1X)=p(os.X)p(s1s,X)p(s.,]X) (3.7)

Where, p(s_, | X) is calculated recursively using Equation (3.8):

p(%llx): Z p(§i71|SLZ,X)p(§i72P() (3.8)

e,

Therefore given the initial probabilitieg(s, | X), these values can be calculated for

anyt.

The marginal probability of an observation is giv®n

p(o 1X)=>" > p(0.5.5, IX) (3.9)
§ Sa
Finally, the joint probability of the sequence tervations is calculated by:

p(O[X)= ILIZ p(o,| X) (3.10)

t=1 s s
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It is important to note thatp(s ,|X)is calculated recursively, therefore the

Equation (3.10) depends on the initial conditions.

One of the difficulties with the two last formulais is the initial conditionsg]). In

most cases it is assumed that the initial condstiare either observed or represent a
steady state. However, there are many cases whergdt time a subject is observed
does not correspond to any natural starting pauwat iastead, it is determined by the
location and capabilities of the data collectiosteyn. Therefore, it is necessary to find

a method to overcome this limitation, as it willéelained in the next sections.

3.1.4 Initial Conditions

In dynamic panel data models with unobserved effatie treatment of the initial
observations is an important theoretical and pratproblem.

Before parameters generating a stochastic procébsdependence among time-
ordered outcomes can be estimated, the processmgsimehow initialized. In applied
work, two initial conditions are typically invoked:

e The pre-sample history of the process is truly exogys.

e The process is assumed to be in equilibrium.

If the process has been in operation prior to ithe it is sampled, as it happens in
our case, or if the disturbance term of the modesarially correlated, the initial
conditions are not exogenous variables. Treatiegnts exogenous variables, results
in inconsistent parameter estimates.

For linear models with an additive unobserved ¢ffde problems can be solved by
using an appropriate transformation, such as @iffeing, to eliminate the unobserved
effects, and then chooses instruments based onersg@ju conditional moment
assumptions.

Solving the initial conditions problem is notablyra difficult in nonlinear models.
Generally, there are no known transformations #imhinate the unobserved effects
and result in usable moment conditions. Previouseaeh has focused on three
different ways of handling initial conditions. Thiest approach is to treat the initial
condition for each cross-sectional unit as nonramdeariables. Unfortunately,
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norandomness of the initial conditions,, implies that s, is independent of

unobserved heterogeneity,. Even when we observe the entire history of tleegss,
the assumption of independence betweeand s, is very strong. Another approach is

to allow the initial condition to be random, anenhto use the joint distribution of all
outcomes on the response (including that in thealniime period) conditional on
unobserved heterogeneity and observed strictly exmgs explanatory variables. The
main complication with this approach is specifyitige distribution of the initial
condition given unobserved heterogeneity. The thpdroach, proposed by Heckman
(1981) is to approximate the conditional distribatdf the initial condition. This avoids
the practical problem of not being able to find tdwaditional distribution of the initial
value.

Specifically the following procedure is proposeddaexamined by Heckman
(1981):
1. Approximate the utility function at the initial ofxwations in the sample to

individual n, by:

U2(t)= (5. %) +av, +&,(t)

* * (3.11)
U2(t=0)= f"(X,)+av, + 1,(0)

Where U°(t)and U°(t=0) are the utilties functions of the alternative
O={1,...i,..1}to individual n at time t and at the special case of tinte- 0

respectively where the previous state can not beéeted. 1,(0) is assumed to be

i.i.d distributed with mean zero.

2. Permit 1, (0)to be freely correlated with, (t), t =0,..T andcov(g, &, ,)= 0.

3. Estimate the model by the method of maximum likadith without imposing any
restriction between the parameters of the structysiem and the parameters of the
approximate reduced form probability function foe tinitial state of the sample.
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3.2 Application to the Lane Changing Model

3.2.1 Model Structure

Driver behavior can be characterized as sequentasit actions each associated
with a particular state of the driver-vehicle eoviment and characterized by a set of
observable states. In the lane change processb$ervable state is the lane change
(change right, change left, no lane change) anthittaen state is the target lane.

The lane change models proposed by Toledo et @03j2and Choudhury (2005)
are static models. They assume that all state diepmees are captured by the
explanatory variables. This approach is based enctincept of a partial short-term
plan. To illustrate this approach, consider theadion described in Figure 3.1: suppose
that vehicle B is a slow-moving vehicle and tha goal of vehicle A is to overtake it.
The short-term plan may consist of the followingpst

e Change to the left lane.
e Accelerate and pass vehicle B.

e Change back to the right lane.

Figure 3.1 - A lane changing situation illustratpartial short-term planning

Vehicle A will perform the first step: change teetkeft lane and then re-evaluate the
situation and decide what to do next. For examg&pending on the behavior of
vehicle C, vehicle A may continue with the previopisan, or abandon the goal of
overtaking vehicle B and follow vehicle C in thé lane.

This approach captures the effect of evolving coml on driving behavior at the
expense of assuming that all state dependenciexaptired by the explanatory

variables. This assumption may not be restrictimees explanatory variables that are
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derived from the positions and speeds of the stibvjelicle and surrounding vehicles
are important in all driving behavior models. Treues of these variables depend on
the past actions of the vehicle (e.g. the currgeed and position of a vehicle are a
function of previously applied accelerations) amd sapture the effects of previous
actions and states. The computational burden agsdcwith the partial short-term

approach is low since calculation of the likelihdadction require2T | s| probability

calculations. In spite of the fact that this apploaaptures the effect of evolving
conditions on driving behavior, it is also assurtieat at each point in time the driver
assesses the situation and selects the immediaia,aand as it was explained earlier it
iS not a real assumption.

Another possible modeling approach, which was prteskin section 3.1.2, would
be to define latent states as combinations of &-4&on goal and a short-term plan and
capture the dynamics of the behavior by modelingtestdependencies. The first
problem in the analysis of a full state-dependeasywas described above is the
exponential increase in possible trajectories €s)at This complexity could be
discussed with the help of an example. Considegtecie that is observed in a two lane
roadway for three consecutive time periods durimgctvtime it did not change lanes.

To simplify the discussion further, we consideotpossible states "Right lane" or
"Current lane" of the decision tree. The lane clragnglecision tree reduces to the one
shown in Table 3.1. Since the driver did not chalages, he/she may be in state "Right
lane and gap reject"” or in state "Current Lane'irduthese three times.

Table 3.1 - Possible States during the three sas@Eme periods.

Time Lane Possible states

period change (arrows show state to state transitions)
1 No Right lane/ reject gap Current lane
2 No Right lane/ reject gap Current lane
3 No Right lane/ reject gap Current lane
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The number of possible sequences in the summafidaqoation (3.6) is|s|",
where |s| is the number of possible states. The total nundfeprobabilities to

calculate is Z |s|". Except for degenerate cases with a very smabfsgbssible states

or a very short observation period, modeling alkgble combinations of states is
prohibitively expensive. From the mentioned aboiteis not a viable method of
analysis.

To overcome the limits mentioned above, we willgose an intermediate approach
to modeling driver behavior capturing the effecteMolving conditions on driving
behavior (state dependency).

The decision to initiate a lane change and themaoee of gaps to complete it are
affected by neighborhood variables and driver atterstics as well as the decision
state of the driver To implement such an approach, we assume thatriber dhas a
number of states, each with its own associatedsiae transition probabilities. We
must make observations of the driver’'s state, anllema response based on the model
applied to the current state. But the internal estadf the driver are not directly
observable, thus we must use an indirect estimgifoness on the observed behavior
(e.g., staying in the current or changing lanesp Wave adapted the expectation-
maximization methods developed for use with HMMs#&rform this estimation task.
The likelihood of any state in our dynamic modelke®s use of the estimate of the
current state to adjust the transition probabditie

The observed sequence of states is probabilisticalated to the hidden process.
We model such processes using a HMM where theam snderlying hidden Markov
process changing over time, and a set of obsensates which are related somehow
to the hidden states.

Figure 3.2 shows the application of this methodplog the lane changing model
for a two lane case. Latent states are shown ds awnd observed states are represented
as rectangles. The target lane is the lane theerdperceives as best to be in. The
decision process is latent since the target lané&ehs unobservable. For example, we
may observe that a driver stays in his current,ldnoe we cannot observe the reason
that caused him to stay there: The driver may l@dnsen not to pursue a lane change
at all or he may have chosen to move to another lant could not complete the lane
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change. Thus lane selection is a latent processhwéwolves from state to state and
generates a sequence of hidden states. A desinedclaange is executed when the
driver evaluates the adjacent gap in the target Bmd decides whether this gap is
acceptable (Right Lane), otherwise the driver dadsexecute the lane change (Current
lane). This process generated the observable @i astate.

Target Lane (Hidden State) o) @

Outcome State (Observable State) Right lane Current Lane Current Lane

Figure 3.2 - Structure of the proposed lane changindel

However, there is still a difficulty with this formtation: the initial conditionsg).

In most cases it is assumed that the initial comast are either observed or represent a
steady state. However, in our case, the first tan@ehicle is observed does not
correspond to any natural starting point that waugdport this assumption. Instead, it
is determined by the location and capabilitieshef data collection system, as explained
in the data chapter.

The lane changing model explains the choice ofdifier in two dimensions: the
target lane choice and the gap acceptance. Laltigy dtinctions may depend on
explanatory variables as it will be explained ire thext chapter. Variables should
reflect the conditions in the immediate neighborhdao each lane (e.g. relative leader
speed in each lane and presence of heavy vehipla#),plan considerations (e.g. the
distance to a point where the driver must be inatedane(s) and the number of lane
changes needed in order to be in these lanes) aodlédge of the system (e.g.
avoiding the left lane before a permissive lefintar avoiding an on-ramp merging

lane). In most cases information about the charistitss of drivers and their vehicles
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(e.g. aggressiveness, vehicle's speed and acaatecaipabilities and level of driving
skill) is not available. Therefore, it is necessayintroduce individual-specific latent
variables in the utilities to capture these cotrets. Different choice models are
obtained depending on the assumption made abouligtrdution of the error terms. It
can be assumed that conditional on the value ofatest variable, the error terms of
different utilities are independent. Mathematicalhyjs specification is given by:

U (1) = X0 (1) + poi™ (t—1) + o™ v, + & (t) (3.12)

n

Where,U ™™ (t) is the utility of the alternative of choosing lain® individual n at
time t. X *™'(t) is a vector of explanatory variable§*'is a vector of parameters.

5" (t-1)is the state dependence variahfeis the state dependence paramateris

an individual-specific latent variable assumed tdlofv some distribution in the

lanei
n

population. ®™' is the parameter ab . £ (t)is a generic random term with i.i.d.

lanei
n

distribution across the choices, individuals antetie ™ (t) andv, are independent of

each other.

3.2.2 The Target Lane Model

Next the specification of the models is presentedaetail in order to explain the
two choices that the drivers make within the lam@anging model: the target lane
choice and the gap acceptance decision.

At the first level, the driver chooses a targeteldiL), which is the lane with the
highest utility. The target lane choice set constt of all the available lanes in the
roadway. The total utility of lané as a target lane to drivan at timet can be

expressed by:

Ut =Vt () +a™v, +&,(t)  VTL={LanelLane 2Lane 3Lane 4 (3.13)

Where V. (t) is the systematic component of the utility amd v, + ¢! (t) is the

error term associated with the target lane utditie, is an individual specific error
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term that captures correlations between the obsengof a single driver over time
(individual-specific latent variablesyx™is the parameter ob.. £!*(t) is a generic

random term.

The systematic utilities are given by:
VE(t) =BT X () +p8, " (t-1)  VTL={LanelLlane 2Lane 3Lane 4 (3.14)

Where, X (t) is a vector of explanatory variables affecting kitities of the lanes
and g™ is the corresponding vector of parameteis.(t—1) is the state dependence

variable. p is the state dependence parameter.

The utilities of a target lane may be affected lepeagal lane attributes, such as
density and speed of traffic in the lane, traffamposition (e.g. percentage of heavy
vehicles), etc. Moreover, special lane-specificiaite may be included in the utility
function. For example, the exclusive lane-specifinables are included in the utility of
a lane if the lane in considerations is a tolletela

The driver's target lane choice may be affectethbyvariables associated with the
surrounding vehicles, such as speed and type ofehiles in the neighborhood. The
value of these neighborhood variables is indicatethe current position of the vehicle.
For example, if the front vehicle in the currentdehas a very high speed compared to
the driver's desired speed, the driver is likelptefer the current lane over other lanes;
it means the current lane is likely to have a higligity.

The driver may be consistent in his behavior. Tlamgther important variable that
may affect the driver's target lane is the targeelthat the driver previously chose. For
example, suppose that the right lane is the taegyet chosen by the driver in the
previous time. Therefore, the right lane is likédy have a high utility capturing the
consistency on the driver's behavior and the degp@rydon the target lane over the two
consecutive time periods.

There are up to four components that compose #gtespatic utility of a lane:

e Utility component consisting of the characteristdéshe lane.
e Utility derived from the relative position of tharle with respect to the current

lane.

32



e Utility derived from the state dependence.

e Utility component derived from the path plan of tr&hicle.

Different choice models are obtained dependinghenaissumption made about the
distribution of the error termsg’“(t). Assuming that these random terms are
independently and identically Gumbel distributedoict probabilities for the various
lanes, conditional on the individual specific erterm (v,) are given by a Multinomial

Logit model:

PL |TL, . 0, )= ~SXPBIX" +p0™ " Io,)
Y exp(Br X[t + ps™ P, ) (3.15)

jeTL

VTL = {Lanel, Lane2,Lane3,Lane 4

Where, B X" + p5™ |u, is the conditional systematic utility of the aftative

lane.

3.2.3 The Gap Acceptance Model

In the target lane model the driver may chooséayp is the current lane or to target
changing either to the right lane or to the lefitelaNext, conditional on the target lane
choice, the driver decides by evaluating the gaygsether or not to change lanes
immediately using the adjacent gap. Following thedel proposed by Toledo et al.
(2003) and Choudhury (2005), this work uses the sgapeacceptance model structure
used in their works.

The adjacent gap in the target lane is definedheyléad and lag vehicles in that
lane as shown in Figure 3.3. The lead gap is ther clpacing between the rear of the
lead vehicle and the front of the subject vehi@anilarly, the lag gap is the clear
spacing between the rear of the subject vehicletamdront of the lag vehicle. Note
that one or both of these gaps may be negative i#&€hicles overlap.
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Figure 3.3 - The subject, lead and lag vehiclesthadyaps they define

Critical gaps vary for different individuals and tlvithe situation. The driver’'s
critical gaps are the minimum acceptable gaps. Hieymodeled as random variables
whose means are functions of explanatory variables.available lead and lag gaps are
compared to these ones. An available gap is actemtly if it is greater than the
critical gap. The individual specific error ternptares correlations between the critical
gaps of the same individual over time. Critical gape assumed to follow a lognormal

distribution to ensure that they are always positikiey are:

(G ™ (1)) = B X (t) + &' v, + 21 (1) (3.16)

IN(Gy™ (1)) = BOXP™ (1) + o™, +£7(1) (3.17)

Where, G'* ™ (t) and G ™ (t) are the lead and lag critical gaps in the target
lane, measured in meterX,®* ™(t) and X® ™(t) are vectors of explanatory variables
affecting the lead and lag critical gaps, respetyiv £ and £ are the

corresponding vectors of parametees™(t) and £*(t) are normally distributed

random terms associated with the critical gaps;*(t) ~N(0,00, )and

e®(t)~N(0,0%,). = and o™ are the parameters of the individual specific cand

termo, for the lead and lag critical gaps, respectively.
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The gap acceptance model assumes that both thgdgadnd the lag gap must be
acceptable in order for the vehicle to change laimée probability of changing lane,
conditional on the individual specific term and theget lane is therefore given by:

P, (change to target larié} v,) =P, (I = |TL,p,)=
P, (accept lead gafl, v,)P,( acceptlag g&p b,) = (3.18)
PG (1) > ™ (1) ML w,)- R (G™ €)> G™ ) TTL, »,)

Where, TL is the target lane (which requires a lane changg).is the lane

changing indicator for the target lane (the lanengiing action):

n |1 achangetolaneTL is performed at timet
' 0 otherwise

G*=™(t) and G™™(t) are the available lead and lag gap in the targee,|

respectively.G!*!™ (t )and G ™ (t ) are the corresponding critical gaps.

Assuming that critical gaps follow a lognormal distiion, the conditional
probability that the lead gap is acceptable is igive:

R.(IN(G™™®)>In(G=™ ) ITL v, )
o In (G:]eadTL(t))_(er]eadTL(t)ﬂlead +a|eadun)

P (G:]ead TL (t) S Gfl]ead TL,cr (t) |TL[ 1Un) —

(3.19)

Olead

Where, @[] denotes the cumulative standard normal distrilutio

Similarly the conditional probability that the lggp is acceptable is given by:
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PG (1) > G™ (1) TL, v, ) =

P (|n (G™ (1)) > In(G=™ (1)) ITL, ,un) = (3.20)
o In (G:]agTL (t))_(er]agTL (t)ﬁlag +a|agun)
Olag

The gap acceptance decision is affected by neitloloar variables and path plan
variables, which are captured by explanatory véggmbke the subject vehicle’s speed,
relative speeds with respect to the lead and lagches in the target lane, traffic density
and indicators for the urgency of the lane chamgg. the distance to the point the lane
change must be completed).

Decisions made at lower levels of the driving betwawdecision process are
conditional on those made at higher levels (e.go @aceptance decisions are
conditional on the target lane choice). The effe¢tewer level choices on higher-level
decisions may be captured by introducing the exggeotaximum utility EMU) of the
alternatives at the lower level in the specificatad higher-level choices.

3.2.4 Treatment of the Initial Conditions in the Lane Changing
Models

As it was explained above, the treatment of theainobservations is an important
theoretical and practical problem. Next, the treattmof the initial conditions in the
lane changing models is presented.

First, the utility function at the initial observats in the sample to individual is

approximated by:

U (t=0)= f (X,)+av, + 1, (0) (3.21)

Where U - (t = 0) is the utility function of the alternative of cheing lanei as a

target lane to individuah at the special case of time- 0 where the previous state can

not be modeledg, (0) is assumed to be i.i.d distributed with mean zero.
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The conditional systematic component of the utildf lanei for the initial
observation is different from the others observatjcthus all the parameters for this
observation are allowed to be different, too. Ty&ematic component of the utility is
given by:

V.H(0) |v, = X (0)  VTL ={Lanellane 2lane 3Lane ¥ (3.22)

Where, X“(0) is the vector of explanatory variables for thecsal case ot =0.

S ™ is the corresponding vector of parameters for i@l observations.

Then the model is estimated by the method of mamimiikelihood without
imposing any restriction between the parameterghef structural system and the
parameters of the approximate reduced form probgalfilnction for the initial state of
the sample.

3.3 The Likelihood Function

In this section, the likelihood function of laneatiging actions observed in the
trajectory data is presented.

As discussed in a previous section, there is aroitapt limitation in the dataset;
explanatory variables related to the driver/vehatiaracteristics and to the driver's path
plan are not available. For example, the path plaindrivers exiting the freeway
downstream of the observed section are unknown.

In order to overcome the lack of driver/vehicle mduderistics data, the
driver/vehicle specific latent variables are inwodd in the model. These variables
capture correlations between the decisions madéhéysame driver over time. The
individual specific error termy,, is included in the specification of the targetelaand
in the gap acceptance utility functions. The par@nseassociated with this variable in
the various model components are estimated joirgly so, capture correlations
between these decisions, which may be attributeduiobserved driver/vehicle

characteristics.
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Variables related to the path plan, such as themts to an off-ramp the driver
needs to use are not available for vehicles thattes freeway downstream of the
observed section. In order to capture the effeche$e variables, a distribution of the
distance from the downstream end of the road seb#oing studied to the exit points is
used. It is used a discrete distribution of thedagises, based on the locations of off-
ramps downstream of the section. The alternatieesidered are the first, second and
subsequent off-ramps. The probability mass functmin distances beyond the

downstream end of the section to the off-ramps byadtivers is given by:

7, first downstream exit (d")
p(d,) =17, second downstreamexit (d?) (3.23)

1-7,-7,  otherwise(d®)

Where, 7, and rz, are the parameters to be estimated. They arertipomions of

drivers using the first and second downstream affy, respectively.d*, d? and
d®are the distances beyond the downstream end ofeittéon to the first, second and
subsequent exits, respectively.

The first and second exit distanced" (and d?) are measured directly from
geometric information. For the subsequent exitsnéinite distance is usedd? = ),
which corresponds to an assumption that drivers uba this exits ignores path plan
consideration in the lane choice. The parametershisf distribution are estimated
jointly with the other parameters of the model.this way in stead of handling with
missing data and unobserved driver/vehicle charatits, the likelihood function can
be formulated.

The joint probability density of a combination @lrget lane TL) observed for
driver n at timet , TL for driver n at timet—1 and lane actior{l) observed for

driver n at timet, conditional on the individual specific variables, and the distance

to the exit pointd, is given by:

P (TLTL L, 0,) = P (TL T 8, 2) B (L TL 0,) P TL, oo, (3.29)
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Where, P, (TL, |TL_,,d, v,) and P, (I, |TL,,v,) are given by Equations (3.15) and

(3.18), respectivelyP,(TL, , |d,,v,) is calculated recursively using Equation (3.25):

P.(TL ld,0)= > P (TLLLITL 5 d, 0, P (Lo, p,) (3.25)

€Tl _,

Therefore given the initial probabilitied (TL, |d,,v,), these values can be

calculated for any.
Only the lane changing actions are observed. Thgina probability of the lane
action is given by summing the target lane outefjbint probability:

P(Lid,.0,)= > >0 R(TLLTL, L H, 0,) (3.26)

JETL ieTh 4

The behavior of drivem is observed over a sequence Tofconsecutive time

intervals. With the assumption that, conditional @pnand v, , these observations are

independent, the joint probability of the sequeatebservations is the product of the

probabilities given by:

P.(,0)=[ [ T ROUTL,LH,0)=[]R (8, v, (3.27)

t=1 jeTl ieTl_,

Where,| are the sequences of lane changing decisions.important to note that

P.(TL,,|d,,u,)was calculated recursively, therefore Equation {B.@pends on the

initial conditions.
The unconditional individual likelihood function igcquired by integrating (or

summing, for the discrete variabtg ) the conditional probability over the distribut®n

of the individual specific variables:

L, = [> R(1d,0,)p@)f ©)dv (3.28)
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Where, p(d) is given by Equation (3.23) and (v) is the standard normal

probability density function.
Assuming that observations of different drivers maependent, the log-likelihood

function for allN individuals observed is given by:
N
L:ZIn(Ln) (3.29)
n=1

The maximum likelihood estimates of the model paters are found by
maximizing this function. In this work, the Broydé&tetcher-Goldfarb-Shanno (BFGS)
optimization algorithm implemented in the statigticestimation software GAUSS
(Aptech Systems 1994) was used. BFGS is a quastdtemethod, which maintains
and updates an approximation of the Hessian matsed on first-order derivative
information (see, for example, Bertsekas 1999). GAUmplements a variant of BFGS
due to Gill and Murray (1972), which updates theoleébky decomposition of the
Hessian (Aptech Systems 1995).

The integrals in the likelihood function were cd#&ted numerically using the
Gauss-Legendre quadrature method (Aptech Syste8%).1Blumerical integration is
expected to perform better than Monte-Carlo integnain the application at hand
because of the presence of the reaction time dionslonte-Carlo integration would
require explanatory variable values, lagged byrdeetion time, to be calculated for
each draw. In contrast, with numerical integratimty the explanatory variables values
for the (much fewer) points used for the integrati@ed to be calculated.

The likelihood function is not globally concave.rFexample, if the signs of all the

coefficients of the individual-specific error term, are reversed, the solution is

unchanged due to its symmetric distribution funtti@o avoid obtaining a local
solution, different starting points were used ie dptimization procedure.

3.4 Summary

In this chapter, mathematical formulations of thiéecent components of the lane
changing model were presented. The proposed mgdelinlane changing allows
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behaviors that were not modeled previously, sucthasstate dependency behavior to
facilitate lane changing to be captured.

At the beginning of the chapter different possibledeling structures that allow
capturing state dependency were discussed. A nepaelification that accounts for a
full state dependency was presented. However thaxem is computationally
demanding. Another alternative specification, dicstmodel, which is based on the
concept of partial short-term plan, was proposdus &pproach captures the effect of
evolving conditions on driving behavior in an iretit way. It assumes that drivers
make repeated instantaneous decisions. State dapses are not explicitly modeled,
but it is assumed that they are captured by thexgshan the explanatory variable
values.

Finally, a lane changing model that captures dsiviane changing behavior under
the assumption of stability on the behavior wasettgped using HMM structures
within the model.

Similarly to past models, several mechanisms ara@lable within the model
structure to capture inter-dependencies betweendheus decisions made. Decisions
made at lower levels of the driving behavior degigprocess are conditional on those
made at higher levels. In addition, individual-gfieclatent variables may be
introduced in the various choice models to captaneelations between the decisions
made by a given driver that are the result of ueoked driver and vehicle
characteristics.

In the proposed target lane model, the driver selkde lane with the highest utility
as his target lane and makes lane changes batbs @hoice. A lane change occurs in
the direction implied by the target lane dependinggap availability. Furthermore, the
choice of the driver is dependent on the target that the driver chose in the past.

The state dependence creates dependence on thkcmitditions. However, in this
model the dependence is on the latent state amefdine the initial conditions are not
observable. Furthermore, the first time a subgabserved does not correspond to any
natural starting point and instead, it is determibg the location and capabilities of the
data collection system. To overcome the limitative, adapted an approach proposed
by Heckman (1981), which approximates the distidsutof the initial condition,

conditional on the individual-specific error teriiherefore, the utility function for the
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initial observations for each driver is allowed thffer from that of the other
observations.
At the end of the chapter, the joint likelihood dtion for the target lane selection

and gap acceptance observed in the trajectoryhdataeen derived.
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Chapter 4

Data for Model Estimation

In this chapter, the data requirements for estonatf the model are discussed.
Also, the characteristics of the collection sitel éime dataset used for model estimation

in this thesis are summarized.

4.1 The Collection Site

Trajectory data, which consists of observationstte positions of vehicles at
discrete points in time, provides useful informatiabout the explanatory variables
used for the proposed target lane model. Trajealiaty points are equally spaced in
time with short time intervals between them, typicdl second or less. Speeds,
accelerations and lane changes are extracted ftemtitne series of positions.
Additional explanatory variables required by thedep such as relations between the
subject and other vehicles (e.g. relative speaa® &nd space headways, lengths of
gaps in traffic) may also be inferred from the mataset. The driver specific attributes
are however not directly measurable but these ctemnistics can be captured by
introduction of latent variables to capture cotielas among different decisions made
by the same driver.

The dataset used in this study was collected i3 198 FHWA in a four-lane
section of Interstate 395 (I-395) Southbound inimgtion, Virginia, through video
cameras. It is 997 meters in length and includesraramp and two off-ramps. The
section is shown schematically in Figure 4.5. Amirhof data at a rate of 1 frame per
second was collected through aerial photographthefsection. A detailed technical
description of the systems and technologies usedidta collection and reduction is
found in FHWA (1985). The dataset, smoothed by dol€¢2003) using a local
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regression procedure, contains observations ofptstion, lane and dimensions of

every vehicle within the section every 1 second.
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Figure 4.1 - The 1-395 data collection site
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This dataset is particularly useful for estimatadriane changing models because of
the geometric characteristics of the site: it i$ @®ters long with two off-ramps and an
on-ramp. It is one of the longest sites for whicdjeictory data is available, and so, is
best suited to capture short-term planning, ardatom and non-myopic considerations.
The ramps within the site provide path plan infotiova for the various vehicles.
Moreover, the fact that three distinct path plares gtaying in the freeway or taking the
first or second off-ramp) are represented withia $ite creates the variability that is

needed to capture these effects.

4.1.1 Characteristics of the Estimation Dataset

The vehicle trajectory data of the various vehidgtethe section and the speeds and
accelerations derived from these trajectories aeel o generate the required variables.

The resulting estimation dataset includes 442 ‘edidor a total of 15632
observations at a 1 second time resolution. Onagiea vehicle was observed for 35.4
seconds (observations). All the vehicles are fitsterved at the upstream end of the
freeway section. At the downstream end, the mgjaott traffic (76%) stays in the
freeway. The 8% and 16% of vehicles, which exitdbetion using the first and second
off-ramps (shown in Figure 4.1) respectively, aseful to capture the effect of the path
plan on driving behavior. The breakdown of the id@sibons of vehicles is shown in
Table 4.1.

Table 4.1 - Breakdown of vehicles by destination

Destination # of vehicles
Freeway 337 (76%)
1% ramp 35 (8%)
2" ramp 70 (16%)

Lane-specific variables like lane density, laneespheand percentage of heavy
vehicle have been calculated from the raw dataBeé variation of lane-specific
variables across the different lanes is summaiiz8able 4.2.
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Table 4.2 - Variations of Lane-specific Variables

Lanel | Lane2| Lane3d Lane 4Segment
Average Density d/s, veh/km/lane 28.41 28.29 28.646.56 29.22
Average Density u/s, veh/km/lang  29.86 30.06 30.528.29 29.22
Average Speed, m/sec. 14.22 15.79 16.23 17.650 7515.

The same dataset has been used by Toledo (2003Chaddhury (2005) in
estimating lane changing models. The detailed chamatics of the dataset
documented by them are summarized below:

Speeds in the section range from 0.4 to 25.0 miséb.a mean of 15.6 m/sec..
Densities range from 14.2 to 55.0 veh/km/lane aitinean of 31.4 veh/km/lane. 2% of
the vehicles are categorized as heavy vehiclegtfiesver 9.14 meters or 30 feet).

Acceleration observations vary from -3.97 to 3.98ed. Drivers are accelerating
in 52% of the observations. The level of servicéhm section is D-E (HCM 2000). The
vehicles the subject interacts with and the vaeglklated to these vehicles are shown
in Figure 4.2. Relative speeds with respect toouerivehicles are defined as the speed
of these vehicles less the speed of the subjeble a3 and 4.4 summarize statistics of

the variables related to the subject vehicle ardséhicle in front respectively.

traffic direction

—_

Lag Lag Lead Lead

vehicle > spacirg spacing > vehicle
subject Front Front
vehicle > spacing > vehicle

Figure 4.2 - The subject, front, lead and lag Velsiand related variables
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Table 4.3 - Statistics of variables related togtieject vehicle

Variable Mean Std Median  MinimumMaximum

Speed (m/sec) 15.6 3.1 15.8 0.4 25
Acceleration (rf/sec) 0.05 1.21 0.05 -3.97 3.99
Positive 0.96 0.76 0.78 0 3.99

Negative -0.93 0.75 -0.74 -3.9y7 0
Density (veh/km/lane) 31.4 6.5 30.8 14.2 55.0

Table 4.4 - Statistics of relations between thgexiland the front vehicle

Variable Mean Std Median  Minimum Maximum
Speed (m/sec) 15.8 3.2 16.0 0.2 25.(
Relative speed (m/sec) 0.2 1.7 0.2 -8.6 9.7
Spacing (m) 26.6 21.2 20.4 14 250.%
Time headway (sec) 2.0 1.4 1.7 0.3 27.3

The distributions of speed and acceleration indidia are shown in Figure 4.3.
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Figure 4.3 - Distributions of speed and acceleraiticthe data

The distributions of density and time headway mdhata are shown in Figure 4.4.
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Figure 4.4 - Distributions of density and time heag in the data

Lane selection and gap acceptance behaviors aneredby observing lane changes
drivers perform. An important factor in these babesis drivers' desire to follow their
path. In this dataset drivers have three possiesimhtions, each with a corresponding
path following behavior:

e EXxiting the section through the first off-ramp.
e EXxiting the section through the second off-ramp.

e Staying in the freeway at the downstream end ofédation.

Table 4.5 describes the distribution of observee lahanges by direction (right,
left) and by destination. It is worth noting thaamy of the vehicles that exit the section
through the off-ramps are observed in the rightintase at the upstream end of the
section. This indicates that they may have stactetsidering the path plan constraint
earlier. As a result the coefficients of explangteariables related to the path plan may
be biased towards aggressive behaviors since tine timid drivers are discounted in

the dataset.

Table 4.5 - Distribution of lane changes by dir@etand destination

Destination Right Left
Total 123 74
Freeway 71 71
1 st ramp 12 0

2 nd ramp 40 3
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Table 4.6 - Statistics describing the lead and/&ycles

Variable Mean Std Median Minimum  Maximum

Relations with Lead vehicle

Relative Speed (m/sec) 0.2 2.6 0.5 -17.3 8.1
(0.0) (2.9) (0.2) (-17.5) (15.5)
Lead spacing (m) 22.2 21.9 14.1 0.04 117.9

(19.6) | (39.9) | (13.0) (-18.1) | (268.9)

Relations with Lag vehicle

Relative speed (m/se¢) -04 2.2 -0.3 -6.7 5.2
(0.0) (2.7) (0.0) (-15.0) (14.1)
Lag Spacing (m) 23.1 20.6 16.6 1.7 110.1

(18.6) | (23.0) | (12.0) (-18.1) | (232.6)

Statistics are for the accepted gaps only, in pghesis for the entire dataset

The relations between the subject and the leadlenthg vehicles in the lanes to its
right and to its left, affect the gap acceptancd gap choice behaviors. Table 4.6
summarizes statistics of the accepted lead andjdpg (i.e. the gaps vehicle changed
lanes into). Accepted lead gaps vary from 0.04 13.9 meters, with a mean of 22.2
meters. Accepted lag gaps vary from 1.7 to 110.teregwith a mean of 23.1 meters.
No significant differences were found between tigatrand left lanes. Relative speeds
are defined as the speed of the lead vehicle olatlpevehicle less the speed of the
subject. Statistics for the entire dataset are sltsmwn. With these statistics, negative
spacing values indicate that the subject and thd leehicle partly overlap (this is
possible because they are in different lanes). pe@ed, the mean accepted gaps are
larger than the mean gaps in the traffic streammil&ily, lead relative speeds in
accepted gaps are larger than in the mean of ttesetaand lag relative speeds are
smaller in the entire dataset (i.e. on averageacicepted gaps the subject vehicle is
slower relative to the lead vehicle and fastertiedato the lag vehicle compared to the
entire dataset).

The distributions of relative speeds and spacint) vespect to the front, lead and

lag are shown in Figure 4.5 and Figure 4.6, respeyt
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4.2 Initial Observations

As was explained in chapter 3, the estimation @ thodel allows the utility
function of the initial observation to differ frome subsequent ones. Therefore, we
next present summary statistics for the initialestaation for each driver.
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In the dataset, all the vehicles are first obsematethe upstream end of the freeway
section that it is situated 815 m upstream of trs 6ff ramp. Table 4.6 summarizes
statistics of the variables related to the subyetticle and the vehicle in front for the

initial observations.

Table 4.7 - Statistics of variables related toghieject vehicle and the vehicle in front

for the initial observations

Variable Mean Std Median  MinimumMaximum
Speed (m/sec) 15.5 3.0 15.7 6.0 22.3
Relations with the front vehicle
Speed (m/sec) 15.6 3.1 16.0 6.1 24.5
Relative speed (m/sec) 0.1 1.9 0.2 -8.3 7.5

As we can see, the values we obtain for the indladervations are in the same
range of the other observations. On one hand thedspin the section range from 0.4 to
25.0 m/sec. with a mean of 15.6 m/sec. and on tiwer thand the speeds for the initial
observation range from 6 to 22.3 m/sec. with a naalb.5 m/sec. From the mention
above we can conclude that the Initial Observatias the same behavior that the other
observations. This conclusion allows to us to sgppihat the first observation of our
data will constitute the initial observation ofTthis statement permits to us to build our

model in a simpler way.

4.3 Summary

In this chapter, the data requirements for estonatif the proposed model were
discussed. Trajectory data, which consists of easens of the positions of vehicles at
discrete points in time, is a useful basis to infariables that may explain driving
behavior.

The characteristics of the collection site and dagaset used for model estimation
in this thesis were summarized. Trajectory datanfieB95 Arlington, VA was used to
estimate the model parameters. This dataset igplarly useful for estimation of the

model because of the geometric characteristichefite: the site is 997 meters long
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with two off-ramps and an on-ramp and thereforduthes weaving sections that may
exhibit behaviors represented in the proposed daeging model, such as short-term
planning and anticipation and capture the effe¢hefpath plan on driving behavior.

The data represents a wide range of traffic camkti Speeds range from 0.4 to
25.0 m/sec. Densities range from 14.2 to 55.0 velHéne. The level of service in the
section is D-E.

The values for the initial observation variables ar the same range of the other
observations, which allows us to assume that tkeetlis no difference between the
behavior of the initial observation and the behawicthe other observations.
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Chapter 5

Estimation Results

In this chapter, estimation results of the propolse® changing model using the
Arlington, VA dataset are described. All componeatsthe model were estimated
jointly using a maximum likelihood estimation procee. Statistical assessment and
behavioral interpretation of the results are pressknA discussion of the estimation

results of the various components is also presented

5.1 Estimation Results

The estimation results of the proposed lane chgngiadel with the data from I-
395 section are presented in Table 5.1. All comptmef the model were estimated
jointly using a maximum likelihood estimation prolcee as described in a previous
chapter. However, in order to simplify the pres@aota estimation results for the
various components of the model are discussed aeharThe discussion order follows
the hierarchy of the hypothesized decision-makingcess: the target lane model is

presented first, followed by the gap acceptanceainod
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Table 5.1 - Estimation results of the lane changnagiel

. Parameter T-
Variable -
values statistic
Target lane Model
Lane Attributes| Lane 1 constant -1.859 -3.43
Lane 2 constant -0.649 -2.034
Lane 3 constant -0.034 -0.18
Current lane dummy (CL) 3.264 14.10
More than one lane change from the CL -4.132 -1,97
Neighborhood | Front vehicle spacing, m. 0.026 4.09
Variables Relative front vehicle speed, m/sec. 0.134 2.67
Path-plan Path plan impact, more than one lane change2.604 -5.98
Variables required to the next exit.
Next exit dummy, lane change(s) required. -1.624 .043
Exponent of remaining distand®y c. -1.283 -2.67
Probability of taking 1st exity; 0.0002 0.01
Probability of taking 2nd exit, 0.047 2.044
Heterogeneity | Coefficient of aggressiveness, Lane/d"*: 1.143 3.02
Coefficient of aggressiveness, Lanei27%% 0.270 0.96
Coefficient of aggressiveness, Lanei3)*® 1.803 6.46
Coefficient of aggressiveness, Lanei4)*" 0.453 1.84
State Persistence dummy, 0.131 4.53
Dependence
Variable
Initial Initial Current lane dummy 4.804 1.84
Conditions Initial Path pl_an impact, more than one lane -1.309 -1.99
change required
Variables Initial Front vehicle spacing, m -0.017| -1.9p
Lead Critical Gap
Constant 1.706 6.03
Relative lead speed positive, MaxJ,“*%0) , m/sec -6.323 -3.31
Relative lead speed negative, MixS;**0) , m/sec -0.155 -2.51
Heterogeneity coefficient of lead gap>® 0.099 0.35
Standard deviation of lead gag°*° 0.939 4.18
Lag Critical Gap
Constant 1.429 5.63
Relative lag speed positive, Max%,>%,0) , m/sec 0.512 5.84
Heterogeneity coefficient of lag gag?® 0.211 1.27
Standard deviation of lag gag® 0.775 5.87
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5.1.1 The Target Lane Model

This model describes drivers’ choice of lane theyuld want to travel in. The

target lane choice, are affected by different elass variables:

Lane-specific variables: These variables includgtasice of the lane with
respect to the current lane (indicated by the numlbéane changes required
to reach the lane), position of the lane in thelvesy, special attributes of the
lane if any (e.g. exclusive lane or not).

Neighborhood variables: These variables describestibject vehicle and its
relations with surrounding vehicles. Variables lnistgroup include relative
speeds and spacing with respect to the vehicleomt bf in neighboring lanes.
Path plan variables: These variables capture tleetedf the path plan on
drivers' decisions. Variables in this group inclutigtances to the point where
the driver must be in specific lanes to follow lpigth, the number of lane
changes required to be in the correct lanes andatais of whether the driver
needs to take the next off-ramp.

Driver specific attributes: The lane changing betwavs also likely to be
affected by the individual driving style, capaleg and preferences of the
driver. These variables capture considerationspaaterences that are based
on the driver's knowledge and experience with ttagportation system,
individual characteristics of the driver, such agrassiveness, and of the
vehicle, such as speed and acceleration capadilitie

State dependence variable: The decisions drivelle noaer time are not
independent. This variable captures the effecthefdependence in the lane
changing decisions drivers make over time suclasane the driver chose as
his target lane in the previous time. Then, thisalde captures the stability
and persistence of the drivers' behavior.

As it was explained above, a group of variablestlanse capturing the lane-specific

conditions. The estimated values of the lane-specdnstants imply that, everything

else being equal, the lane 1 — the right-most famethe most undesirable. Lanes that

are more to left are more desirable. This may leerésult of drivers’ preference to

avoid the merging and weaving activity that takies® in that lane.
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Some of the lane-specific variables are dependeti@ current lane of the vehicle.
The coefficient of the current lane dummy captuhesinertia preference to stay in the
current lane. As expected, the sign of this coieffit is positive. Moreover, the value
and the sign of the coefficient of the variablet tbaptures the influence of more than
one lane changes required from the current lankedarget lane denotes the disutility
associated with choosing target lanes that reqmuore than one lane-changing
maneuver.

The variable that captures the state dependenasaied that the utility of a lane
increases if the target lane chosen by the drivgéheé same target lane chosen in the
previous time period. As expected the sign of tdusfficient is positive. This implies
that drivers are persistent in trying to completaree change. When the driver assesses
the situation and selects the immediate actionakes into account the decisions made
earlier. This dummy variable is defined:

1 lane i was the chosen lane at t-1

§ni’“(t—1):{ (5.1)

0 otherwise

With the assumption that all the four lanes hawesdime attributes and the driver is
currently in lane 2, Figure 5.1 shows the variatadrthe probabilities of choosing a
target lane depending on the target lane that easemn in the previous time. As
expected, the figures show that the probabilitglodosing a lane is the highest if this
lane was previously chosen and lower if anotheg laas previously chosen as a target
lane. Furthermore, we can appreciate from the diguyelow that the probability of
choosing a lane is higher if the previously chosee had a lower probability of being
previously chosen. An explanation may be that ttebability of continuing with the
plan increases with its quality. If the driver ceos weak plan (one that has a low
choice probability), the probability of abortingand choosing another one is higher
compared to when the previously selected plarrangt To illustrate this, suppose that
the driver is currently in lane 2. The probabilitfychoosing lane 2 is the highest if the
driver also decided to stay in this lane in thevjmes time period. However, if the
previously chosen lane is not lane 2, the prolighilf choosing lane 2 in the current
time period is highest if lane 4 was previously s#o and lowest if lane 3 was

57



previously chosen. This is also the reverse orfiéhe probabilities of choice of these

lanes.
From the above example we can conclude that theapility of giving up a

previously chosen target lane is lower when thag laas a high choice probability.

Probability of choosing Lane 1

0.014

0.012 -

0.01 -

0.008 -

0.006 -

0.004 -

Lane Specific Probability

0.002 -

Previously  Previously  Previously  Previously
ChosenLL1  ChosenL2  ChosenL3 ChosenL4

Probability of choosing Lane 2

0.935

0.93 1

0.925

0.92

0.915

0.91

Lane Specific Probability

0.905

Previously Previously = Previously  Previously
Chosen L1 ChosenL2  ChosenL3  Chosen L4

Figure 5.1 - Variation of the probability of choogia lane, depending on the
previously chosen lane when the current lane il2an
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Probability of choosing Lane 3
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Figure 5.1 - Variation of the probability of choogia lane, depending on the
previously chosen lane when the current lane i€lA(cont.)

Another group of variables are those capturingidgiconditions in the immediate
and extended neighborhood of the vehicle. The speddspacing of the front vehicle
(only appearing in the utility of the current laregpture the likely satisfaction of the
driver with conditions in the current lane. As egtasl, the sign of these coefficients are
positive, thus the utility of the current lane ieases with the speed of the front vehicle

and with the spacing between the two vehicles. Thjslies that the subject is less
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likely to perceive the front vehicle as a constrarhen the front vehicle speed is higher
and the spacing is larger.

The effect of the path plan is captured by a grotipariables, which combine a
function of the distance to the point where the@rneeds to be in a specific lane (i.e.
in order to take an off-ramp) and the number ot lahanges required to be in the
correct lane. The path plan impact variables indithat the utility of a lane decreases
with the number of lane changes the driver needsetéorm in order to maintain the
desired path. The estimation dataset is from aleme freeway, in which the off-ramps
are in the right-most lane. As expected, the ytdit a lane decreases if the driver needs
to perform lane changes from it in order to maimtdie desired path. This effect is

magnified as the distance to the off-ramp decreé8¥s” = -1.2830). The use of a

power function to capture the effect of the diseafrom the off-ramp guarantees that at

the limits, the path plan impact approaches 0 wtgh(t) — +w and approachesoo
when d**(t) — +0.

Figure 5.2 shows the variation of the probabilitychbosing lane 1 when the driver
needs to take the next exit and his current laneme 2, as a function of the distance
from the off ramp for the following two differentses: lane 1 was the targeted lane in
the previous time and another lane (lane 2, 3 ava®) the targeted lane in the previous
time period.

In the example, Lane 1 is the closest to the ¥xé.can note that when the driver is
far from the desired exit, the probability of chongslane 1 as the target lane is low. As
the distance to exit decreases, the probabilitghmfosing lane 1 gradually increases.
When the driver is very close to the exit the plolig of lane 1 becomes as highest as
possible.

Moreover, we can appreciate in the figure that whdhassumption that the driver is
at the same distance from the off ramp, the prdibabif choosing lane 1 is higher if
the driver already decided to change to this larnt@e previous time period.
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Figure 5.2 — Predicted Probabilities of choosirgytdrget lane closest to an off-ramp
used in the path.

Drivers' perception and awareness of path plan ceraidns is likely to be a
function of the geometric elements of the roadpdrticular, drivers are more likely to
respond to constraints that involve the next rolednent they will encounter. In the
road section used for estimation, such behavior dvprgsent itself for drivers who exit
the freeway using the next off-ramp, as opposedriterd who will use subsequent
exits. As with the impact of the distance, explanateariables are generated by
interaction of a next-exit dummy variable with tiember of lane changes required. As
expected, the estimated coefficient for this vdeiab negative and then, the utility of a
lane decreases if there is more than one lane ehaamired in order to take the next
exit.

The last group of variables is those capturing dhger specific attributes. The
heterogeneity coefficientsy'®®*, o2, o 3%and «'***, capture the effects of the
individual specific error termv, on the target lane choice, thus accounting for

correlations between observations of the same ishdi due to unobserved

lane 1 lane 3

characteristics of the driver/vehicle. and « ™ “are more positive compared with
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a'™™? and ™™ *. In the data collection site there are two ro&as are merged. Then,
we can understand that lane 1 and lane 3 are ghémost lanes of each one of the

roads that met in this section. The estimated pet@rs are positive and so, can be
interpreted as positively correlated with the driz¢imidity. A timid driver (i.e.v, > 0)

is more likely to choose the right lane over thHé dme compared to a more aggressive
driver.

In summary, the target lane utilities are given by:

U ri1t = ﬂi + Olozmxri]ifronté‘rin,CL + 0.134xsri1ifront5rin,adj/c|_
+3.2645.°" — 4,133 1
_ 2-604[d eXit:|71.283AEXiti 1,624 et AEXIT

nt

(5.2)

+0.136!™ +a'v, + el

Where, B' is the constant ofanei. AX:™" and AS;™ are the spacing and
relative speed of the front vehicle lanei, respectively.5:*¥ is an indicator with
value 1 ifi is the current or an adjacent lane, and O otherw8smilarly, 5/ has
value 1 ifi is the current lane, and 0 otherwig&"“-* is an indicator with value 1 if

the lanei involves more than one lane changes from the outame, and O otherwise.

d2" is the distance to the exit driver intends to useAExit' is the number of lane
changes required to get from lango the exit lanes"™ " is an indicator with value 1
if the driver intends to take the next exit, andtBerwise.s5"®™" is an indicator with

value 1 if there is involved a lane change in otdetake the next exit (laneis not the

exit lane) , and 0 otherwis@,™ is an indicator with value 1 if the target landime t

is the same target lane that was chosen in tinte.

5.1.2 The Gap Acceptance Model

The gap acceptance behavior is conditioned on tiverdargeting either the right
lane or the left lane. In these cases, the driseasisumed to evaluate the available

adjacent gap in the target lane and decide whéthelnange lanes immediately or not.
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In order for the gap to be acceptable both the &atllag gaps, shown in 5.3, must be
acceptable. Otherwise, it is not safe for the drigedo lane changing.

e
Adjacent gap Traffic direction
Lag Lag Lead Lead
vehicle gap gap vehicle
Subject Front Front
vehicle spacing vehicle

Figure 5.3 - The subject, front, lead and lag viekiand related variables

Both the lead and lag critical gap are a functiérthe subject relative speed with
respect to the corresponding vehicles. Relativeedpsith respect to a vehicle is
defined as the speed of that vehicle less the spiethe subject.

The lead (or lag) gap is acceptable only if theilalbee gap is larger than an
unobservable critical lead (or lag) gap, whichhis minimum acceptable gap. In order

to ensure that critical gaps are always positiey tare assumed to follow a lognormal

distribution:
(G ™ (1)) = B X (t) + &', + 21 (1) (5.3)
IN(G™ (1)) = BOXP™ (1) + o™, +£7(1) (5.4)

Where, G!*™“(t) and G!*™ (t) are the lead and lag critical gaps in the target
lane, measured in meterX.,* ™ (t apd X @™ (t ) are vectors of explanatory variables
affecting the lead and lag critical gaps, respetyiv £ and g™ are the

corresponding vectors of parametes™(t ahd £(t) are the random terms

associated with the critical gaps for driveat timet. These error terms are normally
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distributed: £/ (1) ~N(0,0%,) and £2(t)~N(0,0%,). & and o™ are the
parameters of the individual specific random tesmfor the lead and lag critical gaps,

respectively.
The estimated lead and lag gaps are given by ensatb.5) and (5.6) respectively:

1.706- 6.3281ax( QAV,™™ ()~
Gy ™o (t) = exp
—~0.158Min( 0AV,™™ ( )+ 0.099, + & t( (5.5)
£'%9(t): N(0,0.939 )
G;ag“ﬂ(t):exp{l.429+ 0.51@ax( AV,®™ t()y 0.281+e t§
(5.6)

£%(t): N(0,0.773)

The lead critical gap decreases with the relatasl Ispeed, i.e., it is larger when the
subject is faster relative to the lead vehicle. €ffect of the relative speed is strongest
when the lead vehicle is faster than the subjedtitncase, the lead critical gap quickly
reduces to almost zero, as the relative speed cieasingly positive. This result
suggests that drivers perceive very little risknfrthe lead vehicle when it is getting
away from them.

Inversely, the lag critical gap increases with thfative lag speed: The faster the
lag vehicle is relative to the subject, the lartier lag critical gap is. In contrast to the
lead critical gap, the lag gap does not diminishewltthe subject is faster. An
explanation may be that drivers have a less relipblception of the lag gap compared
to the lead gap (due to the indirect observatiolagfgaps through mirrors). Therefore,
drivers may keep a minimum critical gap as a sdbetfyer.

Median lead and lag critical gaps, as a functiothefrelative speeds are presented
in Figure 5.4.
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Figure 5.4 - Median lead and lag critical gaps &sation of relative speed

Estimated coefficients of the unobserved driverrati@ristics variablep,, are

positive for both lead and lag critical gaps. Hertbe variable can be interpreted as
positively correlated with the characteristics dfraid driver who requires larger gaps

for lane changing compared to more aggressive @rivdno require smaller gaps for

lane changing.
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5.1.3 Statistical Test for Model Selection

In this section, model selection tests are perfdriveessed on the likelihood function
values at convergence of different lane changinget® the explicit target lane model
proposed by Choudhury (2005) but simplified; theel@hanging model that takes into
account the state dependence with initial valugsatb the variables and the lane
changing model that takes into account the staperiience with initial values for
some of the variables. Estimation results for tiféerdnt models are presented in
Appendix A.

The lane changing model that takes into accounstaiee dependence extends the
lane changing model with explicit target lane ckogroposed by Choudhury (2005).
The model with explicit target lane choice can lmved as nested within the model
with state dependence, and therefore classic tatatisgests can be applied to select
between them. Thus, likelihood ratio tests for m@eadéection are applicable.

The likelihood ratio test (LRT) is a statisticabteof the goodness-of-fit between
two models. A relatively more complex model is camgal to a simpler model to see if
it fits a particular dataset significantly bett€he LRT begins with a comparison of the
likelihood scores of the two models:

LR=2(L,-L,) (5.7)

Where L, is the likelihood score of a model (unrestricteddel) and L, is the

likelihood score of the nested model (restrictedletp This LR statistic approximately
follows a chi-square distribution. To determinethe difference in likelihood scores
among the two models is statistically significamg next must consider the degrees of
freedom. In the LRT, degrees of freedom are eqoatht number of additional
parameters in the more complex model.

The maximum likelihood values and numbers of patarseof the different models
are presented in

Table 5.2.
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Table 5.2 - Likelihood values of the estimated nitede

Model Likelihood value Parameters
Explicit Target Lane Choice Model -880.35 25
State Dependence Model with initial
-874.97 38
values for all the variables
State Dependence Model -876.19 29

We first apply the LRT between the Explicit Tardetne Choice Model and the

State Dependence Model with initial values fortladl variables:

LR=2(-874.97+ 880.35 10.7 (5.8)

Degrees of freedom: 13

The critical value of chi-square distribution wift8 degrees of freedom and a
probability of 0.90 of exceeding the critical valisel9.81.

Adding additional parameters always result inghér likelihood value. However,
when adding additional parameters is no longerifigdt in terms of significant
improvement in fit of a model to a particular d&tasn our case, the results of this test
show that the State Dependence Model with initedi@s for all the variables does not
better fit the data than the Explicit Target Larieo€e Model.

Then, we apply the LRT between the Explicit Targahe Choice Model and the

State Dependence Model with initial values for sarhthe variables:

LR=2(-876.19+ 880.35; 8. (5.9)
Degrees of freedom: 4

The critical value of chi-square distribution with degrees of freedom and a

probability of 0.90 of exceeding the critical valiser.8.
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In this case, the results show that the State DiEpwre Model (with initial values
for some of the variables) better fits the data] #merefore should be selected for

prediction.

5.2 Summary

In this chapter, estimation results of the targetel model using Gauss statistical
estimation software has been presented.

Estimation results for the target lane model indicaignificant influence of
different types of variables: lane-specific atttdm) captured for example by the
position of the driver; variables that capture mhgvconditions in the immediate and
extended neighborhood of the vehicle, for exampéegpeed of the vehicle in front of
the subject and the spacing between them; variabégselate to the path plan, which
combine a function of the distance to the point ngttbe driver needs to be in a specific
lane (i.e. in order to take an off-ramp) and thenbar of lane changes required to be in
the correct lane; variables capturing the driveecdr attributes and the variable
capturing the state dependence.

This last variable is the one that captures thecefdf the dependence in the lane
changing decisions drivers make over time suchhasldne the driver chose as his
target lane in the previous time. Then, this vdeabaptures the stability and
persistence of the drivers' behavior.

Gap acceptance decisions are affected by the subjative speeds with respect to
the lead and lag vehicle in the target lane.

The proposed target lane model includes state depee. The estimation results
indicate that the sign of this additional variabiethe utility function is logical and

matches the intuitive expectations.
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Chapter 6

Conclusions

This chapter summarizes the research reportedisntiiesis and highlights the

major contributionsFinally, directions for future research are alsggasted

6.1 Summary of the Work and Results

Lane changing is usually modeled in two steps: dbeision to consider a lane
change — lane selection process, and the decisierecute the lane change. Modeling
the lane changing decision process is very comgiex to its latent nature and the
number of factors a driver considers before rearhirdecision. The only observable
part of this process is a successful lane changeatipn. The exact time at which a
driver decides to change lanes cannot be obseMedt current models assume that
drivers make repeated instantaneous decisionsadkt point in time the driver assesses
the situation and selects the immediate actionpeaddent of previous decisions.
However, in reality, the decisions of a driver oveme are interdependent.
Interdependencies among decisions, particularly twe time dimension for the same
driver are not captured in detail in most of thasemg models. For example, the
persistence of drivers to follow their originallhasen plans, which can lead to state-
dependence, has been ignored in the state-of-theealels.

A lane changing model that captures drivers' lahanging behavior under the
assumption of stability of the behavior was presénn this work. This approach is
justified by the estimation results for the targete model, which indicates significant
dependence in the lane changing decisions drivake raver time.

A random utility approach has been adopted to mdde¢h components of the
model: the selection of a target lane and gap @anep.The model structure accounts
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for correlations among the choices made by the sdumer over choice dimensions and
time that are due to unobserved individual-spedfaracteristics by introducing a driver-
specific random term. This driver-specific randoernt is included in all model
components. Missing data due to the limitationthefdata collection are also account for.

Drivers that target lane changing evaluate thelaiai adjacent gap in the target
lane to decide whether they can immediately chdages or not. The gap acceptance
model requires that both the lead gap and the dggage acceptable. Their decision is
based on comparison of the available gaps to qoyneBng critical gaps, which are
functions of explanatory variables. Critical gagpénd on the subject relative speeds
with respect to the lead vehicle and the lag vehitlthe target lane.

Statistical tests show that the State DependenadeMines better fit the data than
previous models and therefore should be selectepré&aliction.

6.2 Contributions

The objective of this research is to improve theleliog of driving behavior and in
particular the influence of the state dependendahendrivers' behavior. More reliable
simulation of traffic flow requires driving behavioodels that capture stability in the
driver's behaviors. This thesis contributes to estdtthe-art in driving behavior
modeling in the following respects:

e Development of a framework for modeling the lanarding behavior taking
into account the state dependence between obsersatf a given driver over
time and the development of the detailed specificat of the various
components within the driving behavior model;

e Most of the existing models where the HMM formaligras applied, did not
use real data to estimate them, it was used dai@ned from a driving
simulator. Contrarily, the model developed hersirestimated with data that
was collected in a freeway section from the realldyo

e The parameters of the target lane model were es@nasing trajectory data.
Estimation results show that the state dependeadable is significant in
lane selection. A significant improvement in googief fit is observed over

previous models;
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Estimation results show that the proposed treatro&tihe initial conditions
was successful;

Most of the applications of the HMM structure fané changing, focused in
identifying the intention of the driver using obsed behavior (i.e.
acceleration, steering angle). These models coeldctl whether or not the
driver is changing lanes at the time of the obdemebut did not explain why
the lane changing is undertaking and so cannotigirkche changes ahead of
time. The model proposed in this work, permits tplan the driver's

behavior.

6.3 Future Research Directions

The emergence of microscopic traffic simulationldom the last few years has

brought about increasing interest in driving bebawnodeling. Some of the directions

in which further research is needed are preserdg&vb

Most of published estimation results of lane chaggnodels are for freeway
traffic. Similar models need to be developed fdyaur streets, in which other
factors and considerations such as bus traffic @etkstrians may affect the
behavior.

There is a lack of information about individualsick as the level of skKill,

driving abilities and character. A tool to collette data about the own
attitudes and characteristics of the drivers neetde developed in order to
achieve a better understanding of the driver's\aeha

The interaction between the lane-changing and e#&@n behavior of the

driver is also ignored in the current model. Thieréhe need to develop more
detailed driving behavior models based on the gunoé generalized target
lane capable of capturing interdependencies betwasa-changing and

acceleration behaviors.

The lane-changing duration is omitted in this warke acceleration behavior
of the vehicle changing lanes and of other vehialesind it may be affected

during the execution of lane changes, but thisceéffannot be captured if lane
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changes are instantaneous. Therefore, a modeddpaire the duration of lane
changes needs to be developed.

To enhance the ability of the models proposedimttiesis, the model should
be implemented in microscopic traffic simulatorbeTimpact on traffic flow

characteristics and the performances of simulatees! to be tested.
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Appendix A

Estimation Results of Different

Changing Models

In this appendix, estimation results of the expltarget lane model proposed by

(2005) but simplified and the lane-changing modhelt ttakes into account the state

Lane

dependence with initial values for all the variablesing the Arlington, VA data are

presented.

A.1 Explicit Target Lane Model (Simplified)

The estimation results of the model structure psepoby Charisma (2005) using
the trajectory data from Arlington, VA are presehie Table A.1.

Table A.1 - Estimation results of the explicit tardgane model (simplified)

Variable Parameter T-
values | statistic
Target lane Model
Lane Attributes | Lane 1 constant -1.93 -3.34
Lane 2 constant -0.683 -2.02
Lane 3 constant -0.049 -0.25
Current lane dummy (CL) 3.449 15.38
More than one lane change from the CL. -4.281] -1.7]
Neighborhood | Front vehicle spacing, m. 0.024 3.95
Variables Relative front vehicle speed, m/sec. 0.136 2.71
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Variable Parameter T-
values | statistic
Path-plan Path plan impact, more than one lane change484 -5.67
Variables required to the next exit.
Next exit dummy, lane change(s) required. -1.525 .922
Exponent of remaining distand®y, c. -1.091 -2.75
Probability of taking 1st exity; 0.0002 0.01
Probability of taking 2nd exit, 0.057 2.20
Heterogeneity | Coefficient of aggressiveness, Lane/?7°% | 1.143 1.35
Coefficient of aggressiveness, Lane/?™® | 0.271 0.34
Coefficient of aggressiveness, Lane/3’® | 1.788 8.41
Coefficient of aggressiveness, Lane/4d®* | 0.251 0.32
Lead Critical Gap
Constant 1.667 5.92
Relative lead speed positive, Max3,\**%0) , m/sec 6.376 -3.30
Relative lead speed negative, MixSntlead,0) , m/sec 0-154 -2.49
Heterogeneity coefficient of lead gap™® 0.099 0.34
Standard deviation of lead gag’® 0.931 4.35
Lag Critical Gap
Constant 1.394 5.70
Relative lag speed positive, Max%,°%,0) , m/sec 0.513 5.93
Heterogeneity coefficient of lag gag?® 0.211 1.21
Standard deviation of lag gag® 0.754 5.79
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A.2 State Dependence Model with Initial Values foall

the Variables

The estimation results of the state dependence Instrdeture using the trajectory
data from Arlington, VA are presented in Table Al2.this model it is proposed an

initial value for every variable.

Table A.2 - Estimation results of the state depanodenodel with initial values for all

the variables

Variable Parameter T-
values |statistic
Target lane Model
Lane Lane 1 constant -1.845 -3.54
Attributes Lane 2 constant -0.626 -2.04
Lane 3 constant -0.007 -0.04
Current lane dummy (CL) 3.235 14.18
More than one lane change from the CL. -4.146 52.0
Neighborhood | Front vehicle spacing, m. 0.026 4.17
Variables Relative front vehicle speed, m/sec. 0.147 2.94
Path-plan Path plan impact, more than one lane chang2.617 -6.28
Variables required to the next exit.
Next exit dummy, lane change(s) required. -1.610 2.9%
Exponent of remaining distand®y,c. -1.309 -2.63
Probability of taking 1st exity; 0.0002 0.01
Probability of taking 2nd exit, 0.046 1.99
Heterogeneity | Coefficient of aggressiveness, Lane/¥}*". | 1.063 0.03
Coefficient of aggressiveness, Lane/2)*. | 0.191 0.01
Coefficient of aggressiveness, Lane/3®> | 1.704 8.59
Coefficient of aggressiveness, Lane®)*. | 0.423 0.01
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Variable Parametey T _
values |statistic
State Persistence dummy, 0.148 1.20
Dependence
Variable
Initial Initial current lane dummy 4.801 1.91
Conditions Initial relative front vehicle speed, m/sec -0.118 -1.24
Variables Initial path plan impact, more than one lane -0.763 1.60
change required
Initial Next exit dummy, lane change(s) -0.651 0.36
required
Initial front vehicle spacing, m -0.016 -1.94
Initial Exponent of remaining distand®.c. | -2.512 -0.27
Initial Probability of taking 1st exitr, 0.0002 0.001
Initial Probability of taking 2nd exit; 0.046 0.001
Initial lanel constant -1.752 | 0.051
Initial lane2 constant -0.982 | 0.36
Initial Lane3 constant -0.665 -1.01
Initial More than one lane change from the| -4.151 -0.01
CL
Lead Critical Gap
Constant 1.724 6.05
Relative lead speed positive, Max3,\**%0) , m/sec -6.337 -3.29
Relative lead speed negative, MikSntlead,0) , m/sec -0.156 -2.50
Heterogeneity coefficient of lead gap>® 0.004 0.01
Standard deviation of lead gag’® 0.947 4.33
Lag Critical Gap
Constant 1.467 5.77
Relative lag speed positive, Max%,°%,0) , m/sec 0.513 5.66
Heterogeneity coefficient of lag gag?® 0.153 0.20
Standard deviation of lag ga® 0.815 5.99
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